We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The association between cannabis and psychosis is established, but the role of underlying genetics is unclear. We used data from the EU-GEI case-control study and UK Biobank to examine the independent and combined effect of heavy cannabis use and schizophrenia polygenic risk score (PRS) on risk for psychosis.
Methods
Genome-wide association study summary statistics from the Psychiatric Genomics Consortium and the Genomic Psychiatry Cohort were used to calculate schizophrenia and cannabis use disorder (CUD) PRS for 1098 participants from the EU-GEI study and 143600 from the UK Biobank. Both datasets had information on cannabis use.
Results
In both samples, schizophrenia PRS and cannabis use independently increased risk of psychosis. Schizophrenia PRS was not associated with patterns of cannabis use in the EU-GEI cases or controls or UK Biobank cases. It was associated with lifetime and daily cannabis use among UK Biobank participants without psychosis, but the effect was substantially reduced when CUD PRS was included in the model. In the EU-GEI sample, regular users of high-potency cannabis had the highest odds of being a case independently of schizophrenia PRS (OR daily use high-potency cannabis adjusted for PRS = 5.09, 95% CI 3.08–8.43, p = 3.21 × 10−10). We found no evidence of interaction between schizophrenia PRS and patterns of cannabis use.
Conclusions
Regular use of high-potency cannabis remains a strong predictor of psychotic disorder independently of schizophrenia PRS, which does not seem to be associated with heavy cannabis use. These are important findings at a time of increasing use and potency of cannabis worldwide.
Incidence of first-episode psychosis (FEP) varies substantially across geographic regions. Phenotypes of subclinical psychosis (SP), such as psychotic-like experiences (PLEs) and schizotypy, present several similarities with psychosis. We aimed to examine whether SP measures varied across different sites and whether this variation was comparable with FEP incidence within the same areas. We further examined contribution of environmental and genetic factors to SP.
Methods
We used data from 1497 controls recruited in 16 different sites across 6 countries. Factor scores for several psychopathological dimensions of schizotypy and PLEs were obtained using multidimensional item response theory models. Variation of these scores was assessed using multi-level regression analysis to estimate individual and between-sites variance adjusting for age, sex, education, migrant, employment and relational status, childhood adversity, and cannabis use. In the final model we added local FEP incidence as a second-level variable. Association with genetic liability was examined separately.
Results
Schizotypy showed a large between-sites variation with up to 15% of variance attributable to site-level characteristics. Adding local FEP incidence to the model considerably reduced the between-sites unexplained schizotypy variance. PLEs did not show as much variation. Overall, SP was associated with younger age, migrant, unmarried, unemployed and less educated individuals, cannabis use, and childhood adversity. Both phenotypes were associated with genetic liability to schizophrenia.
Conclusions
Schizotypy showed substantial between-sites variation, being more represented in areas where FEP incidence is higher. This supports the hypothesis that shared contextual factors shape the between-sites variation of psychosis across the spectrum.
Childhood adversity and cannabis use are considered independent risk factors for psychosis, but whether different patterns of cannabis use may be acting as mediator between adversity and psychotic disorders has not yet been explored. The aim of this study is to examine whether cannabis use mediates the relationship between childhood adversity and psychosis.
Methods
Data were utilised on 881 first-episode psychosis patients and 1231 controls from the European network of national schizophrenia networks studying Gene–Environment Interactions (EU-GEI) study. Detailed history of cannabis use was collected with the Cannabis Experience Questionnaire. The Childhood Experience of Care and Abuse Questionnaire was used to assess exposure to household discord, sexual, physical or emotional abuse and bullying in two periods: early (0–11 years), and late (12–17 years). A path decomposition method was used to analyse whether the association between childhood adversity and psychosis was mediated by (1) lifetime cannabis use, (2) cannabis potency and (3) frequency of use.
Results
The association between household discord and psychosis was partially mediated by lifetime use of cannabis (indirect effect coef. 0.078, s.e. 0.022, 17%), its potency (indirect effect coef. 0.059, s.e. 0.018, 14%) and by frequency (indirect effect coef. 0.117, s.e. 0.038, 29%). Similar findings were obtained when analyses were restricted to early exposure to household discord.
Conclusions
Harmful patterns of cannabis use mediated the association between specific childhood adversities, like household discord, with later psychosis. Children exposed to particularly challenging environments in their household could benefit from psychosocial interventions aimed at preventing cannabis misuse.
While cannabis use is a well-established risk factor for psychosis, little is known about any association between reasons for first using cannabis (RFUC) and later patterns of use and risk of psychosis.
Methods
We used data from 11 sites of the multicentre European Gene-Environment Interaction (EU-GEI) case–control study. 558 first-episode psychosis patients (FEPp) and 567 population controls who had used cannabis and reported their RFUC.
We ran logistic regressions to examine whether RFUC were associated with first-episode psychosis (FEP) case–control status. Path analysis then examined the relationship between RFUC, subsequent patterns of cannabis use, and case–control status.
Results
Controls (86.1%) and FEPp (75.63%) were most likely to report ‘because of friends’ as their most common RFUC. However, 20.1% of FEPp compared to 5.8% of controls reported: ‘to feel better’ as their RFUC (χ2 = 50.97; p < 0.001). RFUC ‘to feel better’ was associated with being a FEPp (OR 1.74; 95% CI 1.03–2.95) while RFUC ‘with friends’ was associated with being a control (OR 0.56; 95% CI 0.37–0.83). The path model indicated an association between RFUC ‘to feel better’ with heavy cannabis use and with FEPp-control status.
Conclusions
Both FEPp and controls usually started using cannabis with their friends, but more patients than controls had begun to use ‘to feel better’. People who reported their reason for first using cannabis to ‘feel better’ were more likely to progress to heavy use and develop a psychotic disorder than those reporting ‘because of friends’.
Schizophrenia (SZ), bipolar disorder (BD) and depression (D) run in families. This susceptibility is partly due to hundreds or thousands of common genetic variants, each conferring a fractional risk. The cumulative effects of the associated variants can be summarised as a polygenic risk score (PRS). Using data from the EUropean Network of national schizophrenia networks studying Gene-Environment Interactions (EU-GEI) first episode case–control study, we aimed to test whether PRSs for three major psychiatric disorders (SZ, BD, D) and for intelligent quotient (IQ) as a neurodevelopmental proxy, can discriminate affective psychosis (AP) from schizophrenia-spectrum disorder (SSD).
Methods
Participants (842 cases, 1284 controls) from 16 European EU-GEI sites were successfully genotyped following standard quality control procedures. The sample was stratified based on genomic ancestry and analyses were done only on the subsample representing the European population (573 cases, 1005 controls). Using PRS for SZ, BD, D, and IQ built from the latest available summary statistics, we performed simple or multinomial logistic regression models adjusted for 10 principal components for the different clinical comparisons.
Results
In case–control comparisons PRS-SZ, PRS-BD and PRS-D distributed differentially across psychotic subcategories. In case–case comparisons, both PRS-SZ [odds ratio (OR) = 0.7, 95% confidence interval (CI) 0.54–0.92] and PRS-D (OR = 1.31, 95% CI 1.06–1.61) differentiated AP from SSD; and within AP categories, only PRS-SZ differentiated BD from psychotic depression (OR = 2.14, 95% CI 1.23–3.74).
Conclusions
Combining PRS for severe psychiatric disorders in prediction models for psychosis phenotypes can increase discriminative ability and improve our understanding of these phenotypes. Our results point towards the potential usefulness of PRSs in specific populations such as high-risk or early psychosis phases.