We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We examined longitudinal changes in cognitive and physical function and associations between change in function and falls in people with and without mild cognitive impairment (MCI).
Design:
Prospective cohort study with assessments every 2 years (for up to 6 years).
Setting:
Community, Sydney, Australia.
Participants:
Four hundred and eighty one people were classified into three groups: those with MCI at baseline and MCI or dementia at follow-up assessments (n = 92); those who fluctuated between cognitively normal and MCI throughout follow-up (cognitively fluctuating) (n = 157), and those who were cognitively normal at baseline and all reassessments (n = 232).
Measurements:
Cognitive and physical function measured over 2–6 years follow-up. Falls in the year following participants’ final assessment.
Results:
In summary, 27.4%, 38.5%, and 34.1% of participants completed 2, 4, and 6 years follow-up of cognitive and physical performance, respectively. The MCI and cognitive fluctuating groups demonstrated cognitive decline, whereas the cognitively normal group did not. The MCI group had worse physical function than the cognitively normal group at baseline but decline over time in physical performance was similar across all groups. Decline in global cognitive function and sensorimotor performance were associated with multiple falls in the cognitively normal group and decline in mobility (timed-up-and-go test) was associated with multiple falls across the whole sample.
Conclusions:
Cognitive declines were not associated with falls in people with MCI and fluctuating cognition. Declines in physical function were similar between groups and decline in mobility was associated with falls in the whole sample. As exercise has multiple health benefits including maintaining physical function, it should be recommended for all older people. Programs aimed at mitigating cognitive decline should be encouraged in people with MCI.
Habitual upright walking is a characteristically human trait that provides a challenging set of physiological challenges. When standing erect, two-thirds of the body’s mass is located two-thirds of body height from the ground, precariously balanced on two narrow legs with the only direct contact with the ground provided by the feet [1]. Such a structure challenges the basic principles of mechanical engineering and requires a highly developed postural control system to ensure that the body remains upright. However, in order to progress forwards, it is necessary to repeatedly initiate a forward fall and then ‘re-capture’ this momentum by the appropriate placement of the leading limb. The potential for a loss of balance when performing an apparently simple task such as walking is considerable. It is therefore not surprising that between 50 and 70% of falls in older people occur when walking [2–4]. The aim of this chapter is to provide an overview of the literature pertaining to gait patterns in older people and their relationship to falls. Specifically, this chapter will address gait characteristics during level walking, when distracted by secondary tasks, when stepping over, avoiding, and approaching obstacles, during turning, stair walking, and the ability to respond to trips and slips.
Postural stability can be defined as the ability of an individual to maintain the position of the body, or more specifically, its centre of mass, within specific boundaries of space, referred to as stability limits. Stability limits are boundaries in which the body can maintain its position without changing the base of support [1]. This definition of postural stability is useful as it highlights the need to discuss stability in the context of a particular task or activity. For example, the stability limit of normal relaxed standing is the area bounded by the two feet on the ground, whereas the stability limit of unipedal stance is reduced to the area covered by the single foot in contact with the ground. Due to this reduction in the size of the stability limit, unipedal stance is an inherently more challenging task requiring greater postural control.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.