We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathcal{O}$ be a maximal order in a definite quaternion algebra over $\mathbb{Q}$ of prime discriminant $p$, and $\ell $ a small prime. We describe a probabilistic algorithm which, for a given left $\mathcal{O}$-ideal, computes a representative in its left ideal class of $\ell $-power norm. In practice the algorithm is efficient and, subject to heuristics on expected distributions of primes, runs in expected polynomial time. This solves the underlying problem for a quaternion analog of the Charles–Goren–Lauter hash function, and has security implications for the original CGL construction in terms of supersingular elliptic curves.
Using triality, we define a relative Arason invariant for orthogonal involutions on a -possibly division- central simple algebra of degree 8. This invariant detects hyperbolicity, but it does not detect isomorphism. We produce explicit examples, in index 4 and 8, of non isomorphic involutions with trivial relative Arason invariant.
Like an idea whose time has come, nonabelian Galois cohomology burst into the world in the mid 50's. There had been harbingers, of course. Châtelet's méthode galoisienne for genus 1 curves and Weil's observations on homogeneous spaces had opened the way, and it was a small step to write down the basic operations so that they make sense in a noncommutative situation. Within a few years, several pioneers realized almost simultaneously that the formalism of Galois cohomology could be used to classify various algebraic structures and to illuminate the definition of some of their invariants. This simple and remarkably penetrating idea, soon popularized by Serre's famous monograph Cohomologie galoisienne, immediately took hold. Galois cohomology is indeed algebra at its best: a few formal basic operations with a broad spectrum of far-reaching applications.
Grégory Berhuy's monograph provides a very welcome introduction to Galois descent techniques and nonabelian Galois cohomology, aimed at people who are new to the subject. Beginners will find here a thorough discussion of the technical details that are usually left to the reader. Together with advanced readers, they will appreciate a tasteful tour of applications, including some to which the author, himself an avid cocyclist, has contributed. (Incidentally, the title of Section III.8.1 also offers a glimpse into his taste in movies.) As may be expected, the list of applications discussed here is far from exhaustive, and in the last chapters the exposition is more demanding.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.