We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We link distinct concepts of geometric group theory and homotopy theory through underlying combinatorics. For a flag simplicial complex $K$, we specify a necessary and sufficient combinatorial condition for the commutator subgroup $RC_K'$ of a right-angled Coxeter group, viewed as the fundamental group of the real moment-angle complex $\mathcal {R}_K$, to be a one-relator group; and for the Pontryagin algebra $H_{*}(\Omega \mathcal {Z}_K)$ of the moment-angle complex to be a one-relator algebra. We also give a homological characterization of these properties. For $RC_K'$, it is given by a condition on the homology group $H_2(\mathcal {R}_K)$, whereas for $H_{*}(\Omega \mathcal {Z}_K)$ it is stated in terms of the bigrading of the homology groups of $\mathcal {Z}_K$.
James constructed a functorial homotopy decomposition for path-connected, p ointed CW-complexes X. We generalize this to a p-local functorial decomposition of ΣA, where A is any functorial retract of a looped co-H-space. This is used to construct Hopf invariants in a more general context. In addition, when A = ΩY is the loops space of a co-H-space, we show that the wedge summands of ΣΩY further functorially decompose by using an action of an appropriate symmetric group. As a valuable example, we give an application to the theory of quasi-symmetric functions.
Let $G$ be a simple, compact, simply-connected Lie group localized at an odd prime $p$. We study the group of homotopy classes of self-maps $\left[ G,\,G \right]$ when the rank of $G$ is low and in certain cases describe the set of homotopy classes of multiplicative self-maps $H\left[ G,\,G \right]$. The low rank condition gives $G$ certain structural properties which make calculations accessible. Several examples and applications are given.
Assume that all spaces and maps are localised at a fixed prime $p$. We study the possibility of generating a universal space $U(X)$ from a space $X$ which is universal in the category of homotopy associative, homotopy commutative $H$-spaces in the sense that any map $f\colon X\to Y$ to a homotopy associative, homotopy commutative $H$-space extends to a uniquely determined $H$-map $\overline{f}\colon U(X)\to Y$. Developing a method for recognising certain universal spaces, we show the existence of the universal space $F_2(n)$ of a certain three-cell complex $L$. Using this specific example, we derive some consequences for the calculation of the unstable homotopy groups of spheres, namely, we obtain a formula for the $d_1$-differential of the EHP-spectral sequence valid in a certain range.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.