We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to determine the effect of donor-transmitted atherosclerosis on the late aggravation of cardiac allograft vasculopathy in paediatric heart recipients aged ≥7 years.
Methods:
In total, 48 patients were included and 23 had donor-transmitted atherosclerosis (baseline maximal intimal thickness of >0.5 mm on intravascular ultrasonography). Logistic regression analyses were performed to identify risk factors for donor-transmitted atherosclerosis. Rates of survival free from the late aggravation of cardiac allograft vasculopathy (new or worsening cardiac allograft vasculopathy on following angiograms, starting 1 year after transplantation) in each patient group were estimated using the Kaplan–Meier method and compared using the log-rank test. The effect of the results of intravascular ultrasonography at 1 year after transplantation on the late aggravation of cardiac allograft vasculopathy, correcting for possible covariates including donor-transmitted atherosclerosis, was examined using the Cox proportional hazards model.
Results:
The mean follow-up duration after transplantation was 5.97 ± 3.58 years. The log-rank test showed that patients with donor-transmitted atherosclerosis had worse survival outcomes than those without (p = 0.008). Per the multivariate model considering the difference of maximal intimal thickness between baseline and 1 year following transplantation (hazard ratio, 22.985; 95% confidence interval, 1.948–271.250; p = 0.013), donor-transmitted atherosclerosis was a significant covariate (hazard ratio, 4.013; 95% confidence interval, 1.047–15.376; p = 0.043).
Conclusion:
Paediatric heart transplantation recipients with donor-transmitted atherosclerosis aged ≥7 years had worse late cardiac allograft vasculopathy aggravation-free survival outcomes.
The experiments reported in this research paper aimed to determine the effect of supplementing different forms of L-methionine (L-Met) and acetate on protein synthesis in immortalized bovine mammary epithelial cell line (MAC-T cells). Treatments were Control, L-Met, conjugated L-Met and acetate (CMA), and non-conjugated L-Met and Acetate (NMA). Protein synthesis mechanism was determined by omics method. NMA group had the highest protein content in the media and CSN2 mRNA expression levels (P < 0.05). The number of upregulated and downregulated proteins observed were 39 and 77 in L-Met group, 62 and 80 in CMA group and 50 and 81 in NMA group from 448 proteins, respectively (P < 0.05). L-Met, NMA and CMA treatments stimulated pathways related to protein and energy metabolism (P < 0.05). Metabolomic analysis also revealed that L-Met, CMA and NMA treatments resulted in increases of several metabolites (P < 0.05). In conclusion, NMA treatment increased protein concentration and expression level of CSN2 mRNA in MAC-T cells compared to control as well as L-Met and CMA treatments through increased expression of milk protein synthesis-related genes and production of the proteins and metabolites involved in energy and protein synthesis pathways.
To evaluate the appropriateness of the screening strategy for healthcare personnel (HCP) during a hospital-associated Middle East Respiratory Syndrome (MERS) outbreak, we performed a serologic investigation in 189 rRT-PCR–negative HCP exposed and assigned to MERS patients. Although 20%–25% of HCP experienced MERS-like symptoms, none of them showed seroconversion by plaque reduction neutralization test (PRNT).
We analytically and numerically compute the Onsager dissociation rate (exciton dissociation) on an interface induced by a piezoelectric potential in an inorganicorganic hybrid p-n junction system (ZnO + (poly(p-phenylene vinylene)); PPV). When a positive piezoelectric potential is created at the interface region owing to the deformation of the system, free electrons accumulate at the interface. Hence, screening effects are observed. It is assumed that the electron layer formed at the interface then attracts free holes from the p-type PPV region, which leads to exciton formation, possibly via the Langevin recombination process. The increased exciton density can then contribute to the Onsager dissociation rate, which is maximum around the interface. This paper focuses on the role of piezoelectric effects in promoting exciton formation at the interface and its relation with the exciton dissociation rate.
Blackberry is a fruiting berry species with very high nutrient contents. With the recent increasing consumer demand for blackberries, new sources of germplasm and breeding techniques are required to improve blackberry production. This study was carried out to evaluate the genetic diversity (GD) and relationship among 55 blackberry (Rubus fruticosus) mutants derived from γ-ray treatment (52 lines) and N-methyl-N′-nitrosourea (MNU) treatment (three lines) using an inter-simple sequence repeat marker. A total of 18 bands were amplified with an average of 3.6 bands per primer. Among them, eight bands were identified to be polymorphic with a rate of 44.4%. In addition, the GD information content values were highest in the 60 Gy treatment population and the GD values were higher in the γ-ray treatment populations than in the MNU treatment population. According to a cluster analysis, all the mutant lines can be classified into five categories, and the genetic distance was greatest between the 80 Gy-irradiated population and other populations. These results indicate that mutant lines have high GD and can be effectively utilized for improving blackberry breeding.
Mutation breeding techniques have been used to induce new genetic variations and improve agronomic traits in soybean. In Korea, the Korea Atomic Energy Research Institute (KAERI) has unique radiation facilities to induce plant mutations and has been conducting soybean mutation breeding programmes since the mid-1960s. Until now, the KAERI has developed five soybean mutant cultivars exhibiting early maturity, high yield and seed-coat colour change. In this paper, we review these five mutant cultivars in terms of how to successfully induce unique agronomic characteristics through mutation breeding programmes. A number of induced mutants exhibiting null lipoxygenase enzymes, altered protein patterns or Kunitz trypsin inhibitor activity could serve as genetic resources for the genetic analysis of target genes, and one mutant population has been developed for a reverse genetic study.
An indexed offset distance of the tricuspid septal leaflet ⩾8 mm/m2 is a quantitative criterion for the diagnosis of Ebstein’s anomaly. The purpose of this study was to investigate the validity of this criterion for the discrimination of Ebstein’s anomaly from pulmonary atresia with intact ventricular septum in neonatal patients. A total of 122 neonatal patients, 56 with Ebstein’s anomaly and 66 with pulmonary atresia with intact ventricular septum, were enrolled. Diagnosis of each anomaly was based on typical morphologic features. Echocardiographic variables, including the offset distance of the tricuspid septal leaflet, were measured via an offline analysis of images recorded before 1 month of age. The offset distance of the tricuspid septal leaflet was indexed by the body surface area, and the indexed offset distances in the Ebstein’s anomaly and pulmonary atresia with intact ventricular septum groups were 34.2 mm/m2 (7.1–119.1 mm/m2) and 7.2 mm/m2 (0.0–25.6 mm/m2), respectively. The indexed offset distance was ⩾8 mm/m2 in 29 (43.9%) of the patients with pulmonary atresia with intact ventricular septum; clinical and echocardiographic characteristics were comparable between these 29 patients and the remaining 37 patients with pulmonary atresia with intact ventricular septum. When an indexed offset distance ⩾8 mm/m2 was applied as a cut-off for the diagnosis of Ebstein’s anomaly, the sensitivity was 0.963 and the specificity was 0.561. In conclusion, indexed offset distance ⩾8 mm/m2 cannot be used as a cut-off for the diagnosis of complicated Ebstein’s anomaly in neonatal patients with pulmonary atresia with intact ventricular septum.
This is a copy of the slides presented at the meeting but not formally written up for the volume.
Abstract
Recent advancements in various industries have necessitated the development of new engineering materials exhibiting superior properties of different character. For example, composite electroplating renders excellent corrosion- and wear-resistant materials with good lubrication behavior and chemical stability. Nanometer-sized diamond particles are expected to be good dispersion materials in electro-less composite plating. However, the processing conditions and characteristics of metal/diamond composites are not well understood so far. In this investigation, we developed new processes for co-deposition of Ni-P/diamond composite films on steel plates using the commercial electrolyte composed of nickel sulfate and sodium hypophosphite. No additives were applied in this process as in the conventional methods for the efficient dispersion of diamond particles. The diamond particles of a few hundred nanometer size were dispersed in an ultrasonic bath of de-ionized water. The zeta potential of the diamond solution was measured prior to the incorporation into the electrolyte. The morphology of the prepared films was characterized by FESEM. Based on the FESEM images, the size distribution of the diamond particles was determined using an image analyzer program. The micro-hardness, the coefficient of friction, and the corrosion potential were measured by Vickers hardness tester, tribometer and potentiometer, respectively. The present experimental results revealed remarkable differences in the values of the micro-hardness, the coefficient of friction, and the corrosion potential, compared to those of conventional diamond-free electro-less Ni-P plates. Process conditions were optimized in terms of the concentration of diamond particles, ultrasonic dispersion time, and pH of the electrolyte. As the concentration of diamond particles increased from 0.5to 3g/l, the zeta potential was decreasing with more particles aggregated. The higher the diamond concentration, the higher the volume fraction of diamond particles co-deposited in the nickel matrix. In turn, the coefficient of friction and corrosion potential increasd with the increasing diamond concentration. The particle size distribution was the most uniform in the samples prepared at the concentration of 1.0g/l. The best mechanical properties were obtained when the dispersion time was 30min. and the pH 5.
To identify antibiotic resistance trends and risk factors for resistance of Serratia species to third-generation cephalosporins.
Design:
Retrospective survey of medical records.
Setting:
A 2,200-bed, tertiary-care hospital.
Patients:
One hundred twenty-two patients with Serratia bacteremia between January 1991 and June 2001.
Methods:
Infectious disease physicians collected data from medical records regarding patient demographics, underlying disease or condition, portal of entry, microorganism, antibiogram, complications, antibiotics received, and outcome.
Results:
Among 122 Serratia isolates, 117 (95.9%) were Serratia marcescens and 110 (90.2%) were of nosocomial origin. During the study period, the 122 isolates showed a high rate of resistance to third-generation cephalosporins (45.9%) and extended-spectrum penicillins (56.6%). The resistance rate to ciprofloxacin was 32.0%. The resistance rate to third-generation cephalosporins increased from 31.7% for 1991 to 1995 to 54.9% for 1996 to 1998 and 50.0% for 1999 to 2001. In the multivariate analysis, prior use of a second-generation cephalosporin (adjusted odds ratio [OR], 5.90; 95% confidence interval [CI95], 1.41 to 24.6; P = .015) or a third-generation cephalosporin (OR, 3.26; CI95, 1.20 to 8.87; P = .020) was a strong independent risk factor for resistance to third-generation cephalosporins. The overall case-fatality rate was 25.4% (Serratia bacteremia-related case-fatality rate, 13.1%).
Conclusion:
Prior use of a second- or third-generation cephalosporin was the most important risk factor for bacteremia with Serratia resistant to third-generation cephalosporins, suggesting the need for antibiotic control. The potential role of patient-to-patient spread could not be fully evaluated in this retrospective study.
Microstructural evolution and mechanical properties of gas-pressure-sintered Si3N4 with 4 wt% Yb2O3 as a sintering aid were investigated. The microstructure was not uniform throughout the specimen. Extremely large elongated grains were formed at the outer region near the surface, while relatively small elongated grains were formed at the inner region of the specimen. The outer region expanded inward with the sintering time. Mechanical properties, such as flexural strength, fracture toughness, and R-curve behavior of the specimens were strongly influenced by these variations in microstructure. The fracture toughness and the R-curve behavior of the outer region were higher than those of the inner region of the same specimen. On the other hand, the strength of the inner region was higher than that of the outer region. By controlling the relative thickness of each region, Si3N4 specimens having functionally graded microstructure were obtained. The Si3N4 with such microstructure exhibited high strength, high fracture toughness, and good flaw tolerance at the same time.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.