We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Peripherally inserted central catheters (PICCs) are associated with central line-associated bloodstream infection (CLABSI). The magnitude of this risk relative to central venous catheters (CVCs) is unknown.
Objective.
To compare risk of CLABSI between PICCs and CVCs.
Methods
MEDLINE, CinAHL, Scopus, EmBASE, and Cochrane CENTRAL were searched. Full-text studies comparing the risk of CLABSI between PICCs and CVCs were included. Studies involving adults 18 years of age or older who underwent insertion of a PICC or a CVC and reported CLABSI were included in our analysis. Studies were evaluated using the Downs and Black scale for risk of bias. Random effects meta-analyses were used to generate summary estimates of CLABSI risk in patients with PICCs versus CVCs.
Results.
Of 1,185 studies identified, 23 studies involving 57,250 patients met eligibility criteria. Twenty of 23 eligible studies reported the total number of CLABSI episodes in patients with PICCs and CVCs. Pooled meta-analyses of these studies revealed that PICCs were associated with a lower risk of CLABSI than were CVCs (relative risk [RR], 0.62; 95% confidence interval [CI], 0.40-0.94). Statistical heterogeneity prompted subgroup analysis, which demonstrated that CLABSI reduction was greatest in outpatients (RR [95% CI], 0.22 [0.18-0.27]) compared with hospitalized patients who received PICCs (RR [95% CI], 0.73 [0.54-0.98]). Thirteen of the included 23 studies reported CLABSI per catheter-day. Within these studies, PICC-related CLABSI occurred as frequently as CLABSI from CVCs (incidence rate ratio [95% CI], 0.91 [0.46-1.79]).
Limitations.
Only 1 randomized trial met inclusion criteria. CLABSI definition and infection prevention strategies were variably reported. Few studies reported infections by catheter-days.
Conclusions.
Although PICCs are associated with a lower risk of CLABSI than CVCs in outpatients, hospitalized patients may be just as likely to experience CLABSI with PICCs as with CVCs. Consideration of risks and benefits before PICC use in inpatient settings is warranted.