We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Individuals with cocaine use disorder or gambling disorder demonstrate impairments in cognitive flexibility: the ability to adapt to changes in the environment. Flexibility is commonly assessed in a laboratory setting using probabilistic reversal learning, which involves reinforcement learning, the process by which feedback from the environment is used to adjust behavior.
Aims
It is poorly understood whether impairments in flexibility differ between individuals with cocaine use and gambling disorders, and how this is instantiated by the brain. We applied computational modelling methods to gain a deeper mechanistic explanation of the latent processes underlying cognitive flexibility across two disorders of compulsivity.
Method
We present a re-analysis of probabilistic reversal data from individuals with either gambling disorder (n = 18) or cocaine use disorder (n = 20) and control participants (n = 18), using a hierarchical Bayesian approach. Furthermore, we relate behavioural findings to their underlying neural substrates through an analysis of task-based functional magnetic resonanceimaging (fMRI) data.
Results
We observed lower ‘stimulus stickiness’ in gambling disorder, and report differences in tracking expected values in individuals with gambling disorder compared to controls, with greater activity during reward expected value tracking in the cingulate gyrus and amygdala. In cocaine use disorder, we observed lower responses to positive punishment prediction errors and greater activity following negative punishment prediction errors in the superior frontal gyrus compared to controls.
Conclusions
Using a computational approach, we show that individuals with gambling disorder and cocaine use disorder differed in their perseverative tendencies and in how they tracked value neurally, which has implications for psychiatric classification.
The non-selective serotonin 2A (5-HT2A) receptor agonist lysergic acid diethylamide (LSD) holds promise as a treatment for some psychiatric disorders. Psychedelic drugs such as LSD have been suggested to have therapeutic actions through their effects on learning. The behavioural effects of LSD in humans, however, remain incompletely understood. Here we examined how LSD affects probabilistic reversal learning (PRL) in healthy humans.
Methods
Healthy volunteers received intravenous LSD (75 μg in 10 mL saline) or placebo (10 mL saline) in a within-subjects design and completed a PRL task. Participants had to learn through trial and error which of three stimuli was rewarded most of the time, and these contingencies switched in a reversal phase. Computational models of reinforcement learning (RL) were fitted to the behavioural data to assess how LSD affected the updating (‘learning rates’) and deployment of value representations (‘reinforcement sensitivity’) during choice, as well as ‘stimulus stickiness’ (choice repetition irrespective of reinforcement history).
Results
Raw data measures assessing sensitivity to immediate feedback (‘win-stay’ and ‘lose-shift’ probabilities) were unaffected, whereas LSD increased the impact of the strength of initial learning on perseveration. Computational modelling revealed that the most pronounced effect of LSD was the enhancement of the reward learning rate. The punishment learning rate was also elevated. Stimulus stickiness was decreased by LSD, reflecting heightened exploration. Reinforcement sensitivity differed by phase.
Conclusions
Increased RL rates suggest LSD induced a state of heightened plasticity. These results indicate a potential mechanism through which revision of maladaptive associations could occur in the clinical application of LSD.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.