We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
This article presents a methodology to reduce the energy consumption of an industrial robot. We propose a design for a 3R serial manipulator of general geometry. We show an analytical model aiming to analyze the search space of architectures based on the torsion angles of the robot to determine the optimal architecture that allows the efficient use of energy. The analytical model provides a theoretical estimation of the energy consumption and is validated by monitoring the experimental robot. The numerical calculations obtained with a particular case reduced the energy consumption by approximately 7.5%.
This paper introduces a novel 6-DOF parallel manipulator, which is composed of two 3-RUS parallel manipulators that share a common three-dimensional moving platform. Semi-analytical form solutions are easily obtained to solve the forward displacement analysis of the robot using the non-planar geometry of the moving platform, whereas the velocity, acceleration, and singularity analyses are performed using screw theory. A case study is included to show the application of the kinematic model, which is verified with the aid of a commercially available software. Simple kinematic analysis and reduced singular regions are the main benefits of the proposed parallel manipulator.
Email your librarian or administrator to recommend adding this to your organisation's collection.