We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a variational data assimilation method in order to improve the accuracy of velocity fields $\tilde{\boldsymbol{v}}$, that are measured using particle image velocimetry (PIV). The method minimises the space–time integral of the difference between the reconstruction $\boldsymbol{u}$ and $\tilde{\boldsymbol{v}}$, under the constraint, that $\boldsymbol{u}$ satisfies conservation of mass and momentum. We apply the method to synthetic velocimetry data, in a two-dimensional turbulent flow, where realistic PIV noise is generated by computationally mimicking the PIV measurement process. The method performs optimally when the assimilation integration time is of the order of the flow correlation time. We interpret these results by comparing them to one-dimensional diffusion and advection problems, for which we derive analytical expressions for the reconstruction error.
Scalar image velocimetry (SIV) is the technique to extract velocity vectors from scalar field measurements. The usual technique involves minimising a cost functional, that penalises the deviation from the scalar conservation equation. This approach requires the measured scalar field to be sufficiently resolved and relatively noise free, such that space and time derivatives of the measured scalar field can be accurately evaluated. We quantify these requirements for a synthetic two-dimensional (2-D) turbulent flow field by evaluating the velocity reconstruction accuracy as a function of the temporal and spatial resolution and the noise level. We propose an improved SIV scheme, that reconstructs not only the velocity field but also the scalar field, which does not require approximating the space and time derivatives of the measured scalar field. Improved velocity reconstruction is demonstrated for the 2-D synthetic field. We furthermore apply the scheme to interferograms of the thickness field of a falling soap film, where 2-D turbulence is generated by an array of cylindrical obstacles. The statistics of the reconstructed velocity field are within 10 % of laser Doppler velocimetry measurements.
Transfer of mechanical energy between solid spherical particles and a Newtonian carrier fluid has been explored in two-way coupled direct numerical simulations of turbulent channel flow. The inertial particles have been treated as individual point particles in a Lagrangian framework and their feedback on the fluid phase has been incorporated in the Navier–Stokes equations. At sufficiently large particle response times the Reynolds shear stress and the turbulence intensities in the spanwise and wall-normal directions were attenuated whereas the velocity fluctuations were augmented in the streamwise direction. The physical mechanisms involved in the particle–fluid interactions were analysed in detail, and it was observed that the fluid transferred energy to the particles in the core region of the channel whereas the fluid received kinetic energy from the particles in the wall region. A local imbalance in the work performed by the particles on the fluid and the work exerted by the fluid on the particles was observed. This imbalance gave rise to a particle-induced energy dissipation which represents a loss of mechanical energy from the fluid–particle suspension. An independent examination of the work associated with the different directional components of the Stokes force revealed that the dominating energy transfer was associated with the streamwise component. Both the mean and fluctuating parts of the Stokes force promoted streamwise fluctuations in the near-wall region. The kinetic energy associated with the cross-sectional velocity components was damped due to work done by the particles, and the energy was dissipated rather than recovered as particle kinetic energy. Componentwise scatter plots of the instantaneous velocity versus the instantaneous slip-velocity provided further insight into the energy transfer mechanisms, and the observed modulations of the flow field could thereby be explained.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.