We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
In taste cells, taste receptors, their coupled G proteins and downstream signalling elements mediate the detection and transduction of sweet, bitter and umami compounds. In some intestinal endocrine cells, taste receptors and gustducin contribute to the release of glucagon-like peptide 1 (GLP-1) and other gut hormones in response to glucose and non-energetic sweeteners. Conversely, taste cells have been found to express multiple hormones typically found in intestinal endocrine cells, e.g. GLP-1, glucagon, somatostatin and ghrelin. In the present study, by immunohistochemistry, multiple subsets of taste cells were found to express GLP-1. The release of GLP-1 from ‘endocrine taste cells’ into the bloodstream was examined. In wild-type mice, even after oesophagectomy and vagotomy, oral stimulation with glucose induced an elevation of GLP-1 levels in the bloodstream within 10 min. Stimulation of taste cell explants from wild-type mice with glucose led to the release of GLP-1 into the medium. Knocking out of the Tas1r3 gene did not eliminate glucose-stimulated GLP-1 release from taste cells in vivo. The present results indicate that a portion of the cephalic-phase rise in circulating GLP-1 levels is mediated by the direct release of GLP-1 from taste cells into the bloodstream.
Email your librarian or administrator to recommend adding this to your organisation's collection.