We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Wild radish is a prevalent annual weed throughout the cropping regions of southern Australia. Field experiments were conducted at Wagga Wagga, New South Wales, in 1998 and 1999 to determine the effect of various densities and emergence times of wild radish on yield and quality of canola and on wild radish seed production. As few as 4 wild radish m−2 emerging with canola reduced canola yield 9 to 11%, whereas 64 wild radish m−2 reduced canola yield 77 to 91%. Wild radish interference in canola was greatly affected by its time of emergence relative to canola. At 64 wild radish m−2, canola yield was reduced 77, 54, 33, and 19% in 1998 and 91, 65, 56, and 19% in 1999 when wild radish emerged 0, 2, 4, and 7 wk after canola, respectively. Wild radish that emerged 10 wk after canola did not reduce canola yield. Maximum wild radish seed production ranged from 24,183 to 32,167 seed m−2 when they emerged with canola at high densities. Wild radish that emerged later than canola produced much less seed, but some seed production still occurred in one of the 2 yr when it emerged as late as 10 wk after canola. Wild radish did not directly reduce canola quality in either year, but if wild radish seed were not separated from canola seed, the amount of erucic acid and glucosinolates was increased above marketable levels in some cases. The results of this study will be used to advise growers on wild radish control in canola and will aid the development of a multiyear management strategy for this troublesome weed in annual cropping systems.
Email your librarian or administrator to recommend adding this to your organisation's collection.