We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To examine (i) the association of percentage of total energy intake from protein (protein intake %) with bone mineral density (BMD, g/cm2) and bone loss at the femoral neck, trochanter and lumbar spine (L2–L4) and (ii) Ca as an effect modifier.
Setting
The Framingham Offspring Study.
Subjects
Men (n 1280) and women (n 1639) completed an FFQ in 1992–1995 or 1995–1998 and underwent baseline BMD measurement by dual-energy X-ray absorptiometry in 1996–2000. Men (n 495) and women (n 680) had follow-up BMD measured in 2002–2005.
Design
Cohort study using multivariable regression to examine the association of protein intake % with each BMD, adjusting for covariates. Statistical interaction between protein intake % and Ca (total, dietary, supplemental) intake was examined.
Results
The mean age at baseline was 61 (sd 9) years. In the cross-sectional analyses, protein intake % was positively associated with all BMD sites (P range: 0·02–0·04) in women but not in men. Significant interactions were observed with total Ca intake (<800 mg/d v. ≥800 mg/d) in women at all bone sites (P range: 0·002–0·02). Upon stratification, protein intake % was positively associated with all BMD sites (P range: 0·04–0·10) in women with low Ca intakes but not in those with high Ca intakes. In the longitudinal analyses, in men, higher protein intake % was associated with more bone loss at the trochanter (P = 0·01) while no associations were seen in women, regardless of Ca intake.
Conclusions
This suggests that greater protein intake benefits women especially those with lower Ca intakes. However, protein effects are not significant for short-term changes in bone density. Contrastingly, in men, higher protein intakes lead to greater bone loss at the trochanter. Longer follow-up is required to examine the impact of protein on bone loss.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.