We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Colorectal cancer (CRC) is a leading cause of preventable cancer deaths worldwide, with dietary factors being recognised as key risk modifiers. Foods containing dietary fibre are protective to a degree that the World Cancer Research Fund classifies the evidence supporting their consumption as ‘convincing’. The mechanisms by which fibre components protect against CRC remain poorly understood, especially their interactions with the gut microbiome. Fibre is a composite of indigestible plant polysaccharides and it is emerging that fermentable fibres, including resistant starch (RS), are particularly important. RS fermentation induces SCFA production, in particular, relatively high butyrate levels, and in vitro studies have shown that this acid has strong anti-tumorigenic properties. Butyrate inhibits proliferation and induces apoptosis of CRC cell lines at physiological concentrations. These effects are attributed to butyrate's ability to alter gene transcription by inhibiting histone deacetylase activity. However, the more recent discovery of G-protein coupled receptors that bind butyrate and other SCFA and data obtained from proteomic and genomic experiments suggest that alternative pathways are involved. Here, we review the mechanisms involved in butyrate-induced apoptosis in CRC cells and, additionally, the potential role this SCFA may play in mediating key processes in tumorigenesis including genomic instability, inflammation and cell energy metabolism. This discussion may help to inform the development of strategies to lower CRC risk at the individual and population levels.
Email your librarian or administrator to recommend adding this to your organisation's collection.