We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In [1] we derived a generalization of Kronecker’s first limit formula. Our generalization was a limit formula for the Eisenstein series for an arbitrary cusp of a Fuchsian group Γ of the first kind operating on the complex upper half-plane H. In that work, we introduced Dedekind sums associated to the principal congruence subgroups Γ(N) of the elliptic modular group. The work of our preceding paper suggests a natural question: Is there a generalization of Kronecker’s second limit formula to the setting of a general Fuchsian group of the first kind? The answer to this question is the subject of this paper.
Let be a quadratic field of discriminant d. We say that d is a prime discriminant if d is divisible by exactly one rational prime. It is classically known that the prime discriminants are given by
(p an odd prime).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.