We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study various measures of irrationality for hypersurfaces of large degree in projective space and other varieties. These include the least degree of a rational covering of projective space, and the minimal gonality of a covering family of curves. The theme is that positivity properties of canonical bundles lead to lower bounds on these invariants. In particular, we prove that if $X\subseteq \mathbf{P}^{n+1}$ is a very general smooth hypersurface of dimension $n$ and degree $d\geqslant 2n+1$, then any dominant rational mapping $f:X{\dashrightarrow}\mathbf{P}^{n}$ must have degree at least $d-1$. We also propose a number of open problems, and we show how our methods lead to simple new proofs of results of Ran and Beheshti–Eisenbud concerning varieties of multi-secant lines.
We study the cones of pseudoeffective and nef cycles of higher codimension on the self product of an elliptic curve with complex multiplication, and on the product of a very general abelian surface with itself. In both cases, we find for instance the existence of nef classes that are not pseudoeffective, answering in the negative a question raised by Grothendieck in correspondence with Mumford. We also discuss several problems and questions for further investigation.
We give a geometric description of the loci in the arc space defined by order of contact with a given subscheme, using the resolution of singularities. This induces an identification of the valuations defined by cylinders in the arc space with divisorial valuations. In particular, we recover the description of invariants coming from the resolution of singularities in terms of arcs and jets.
This note describes some of the recent methods and effective results in the study of pluricanonical and adjoint linear systems on higherdimensional varieties. We describe an algebraic construction for the multiplier ideals and we use it to give a simple proof for the Reider theorem.
§1. The purpose of this note is to survey some of the recent results on pluricanonical and adjoint linear systems on algebraic varieties. Let A be a nef and big divisor on a smooth projective variety X. We would like to study the linear system |Kx + A|. For X a curve, it is well known that if deg A ≥ 2, the linear system |Kx + A| is free, and if deg A ≥ 3, then Kx + A is very ample. The canonical linear system |Kx| is very ample if and only if X is not a hyperelliptic curve. From the theory of curves, we know that the properties of these linear systems are closely related to the geometry of the curve. It is natural that one would like to obtain similar numerical criteria for freeness and very ampleness for adjoint linear systems on a higher-dimensional variety, and study their geometric properties.
Many results and ideas in this note are based on my joint work with R. Lazarsfeld. I would like to thank him for sharing with me many of his ideas. For surfaces of general type, Kodaira [Kod], Bombieri [Bmb] and many others have studied the behavior of the pluricanonical maps.
It is well known that the moduli space of stable rank 2 vector bundles on ℙ2 of the fixed topological type is an irreducible smooth variety ([1], and [8]). There are also many known results on the classification of stable rank 2 vector bundles on ℙ3 with “small” Chern classes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.