We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give an example of a $C^{\infty }$ vector field $X$, defined in a neighbourhood $U$ of $0\in \mathbb{R}^{8}$, such that $U-\{0\}$ is foliated by closed integral curves of $X$, the differential $DX(0)$ at $0$ defines a one-parameter group of non-degenerate rotations and $X$ is not orbitally equivalent to its linearization. Such a vector field $X$ has the first integral $I(x)=\Vert x\Vert ^{2}$, and its main feature is that its period function is locally unbounded near the stationary point. This proves in the $C^{\infty }$ category that the classical Poincaré centre theorem, true for planar non-degenerate centres, is not generalizable to multicentres. Such an example is obtained through a careful study and a suitable modification of a celebrated example by Sullivan [A counterexample to the periodic orbit conjecture. Publ. Math. Inst. Hautes Études Sci.46 (1976), 5–14], by blowing up the stationary point at the origin and through the construction of a smooth one-parameter family of foliations by circles of $S^{7}$ whose orbits have unbounded lengths (equivalently, unbounded periods) for each value of the parameter and which smoothly converges to the Hopf fibration $S^{1}{\hookrightarrow}S^{7}\rightarrow \mathbb{CP}^{3}$.
We characterize the set of $n$-jets admitting an extension which is a germ of a differential equation with an analytic first integral, and compute its codimension in the $n$-jet space. Some applications in the case of the centre-focus problem are given.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.