We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
We aimed to clarify the effect of low-carbohydrate diet (LCD) on renal function in overweight and obese individuals without chronic kidney disease (CKD). Literature searches were performed using EMBASE, MEDLINE and Cochrane Library until December 2015. We selected articles that reported human studies from their inception until December 2015 in English using the following searching terms: ‘Low carbohydrate diet’ AND (‘Clinical trial’ OR ‘Clinical study’ OR ‘Clinical investigation’ OR ‘Observational study’ OR ‘Cohort study’). We compared the effects of LCD on renal function, defined as change in estimated glomerular filtration rate (eGFR), assessed in randomised-controlled trials. We calculated the mean change in eGFR and the mean change in standard deviations by eGFR or creatinine clearance, and compared the mean change in eGFR and standard deviations in LCD with those in the control diet using fixed-effects models. We selected nine randomised controlled trials including 1687 participants (861 were fed LCD and 826 were fed the control diet). The mean change in eGFR in the LCD group was −4·7 to 24·0 ml/min per 1·73 m2 and that in the control diet group was −4·1 to 10·8 ml/min per 1·73 m2. The mean change in eGFR in the LCD group was greater than that in the control diet (0·13 ml/min per 1·73 m2; 95 % CI 0·00, 0·26). In the present meta-analysis, we identified that the increase in eGFR was greater in LCD compared with the control diet in overweight and obese individuals without CKD.
We observed two magnetars, 4U 0142+61 and 1E2259+568, with the Japanese infrared satellite AKARI to search for the time variability at wavelengths between 2-4 μm. We significantly detected 4U0142+61 in the 4μm band, and determined flux upper limits in the other two bands. We did not detect 1E 2259+586 in any of the bands, and determined upper limits. Comparing the detection of 4U 0142+61 in the 4μm band with the Spitzer observation from 2005, we found the flux was reduced to be 64%. We interpret this time variability in the infrared band as an increase of the inner radius of the dust disk around the neutron star, where the increase is due to the sublimation of the dust by the large flare of neutron star itself.
Email your librarian or administrator to recommend adding this to your organisation's collection.