We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
While the quasilinear isothermal Euler equations are an excellent model for gas pipeline flow, the operation of the pipeline flow with high pressure and small Mach numbers allows us to obtain approximate solutions by a simpler semilinear model. We provide a derivation of the semilinear model that shows that the semilinear model is valid for sufficiently low Mach numbers and sufficiently high pressures. We prove an existence result for continuous solutions of the semilinear model that takes into account lower and upper bounds for the pressure and an upper bound for the magnitude of the Mach number of the gas flow. These state constraints are important both in the operation of gas pipelines and to guarantee that the solution remains in the set where the model is physically valid. We show the constrained exact boundary controllability of the system with the same pressure and Mach number constraints.
Sensitivity analysis (with respect to the regularization parameter)of the solution of a class of regularized state constrainedoptimal control problems is performed. The theoretical results arethen used to establish an extrapolation-based numerical scheme forsolving the regularized problem for vanishing regularizationparameter. In this context, the extrapolation technique providesexcellent initializations along the sequence of reducingregularization parameters. Finally, the favorable numericalbehavior of the new method is demonstrated and a comparison toclassical continuation methods is provided.
Optimal control problems for the heat equation with pointwisebilateral control-state constraints are considered. A locallysuperlinearly convergent numerical solution algorithm is proposedand its mesh independence is established. Further, for theefficient numerical solution reduced space and Schur complementbased preconditioners are proposed which take into account theactive and inactive set structure of the problem. The paper endsby numerical tests illustrating our theoretical findings andcomparing the efficiency of the proposed preconditioners.
We present an a posteriori error analysis of adaptive finiteelement approximations of distributed control problems for secondorder elliptic boundary value problems under bound constraints onthe control. The error analysis is based on a residual-type a posteriori error estimator that consists of edge and elementresiduals. Since we do not assume any regularity of the data ofthe problem, the error analysis further invokes data oscillations.We prove reliability and efficiency of the error estimator andprovide a bulk criterion for mesh refinement that also takes intoaccount data oscillations and is realized by a greedy algorithm. Adetailed documentation of numerical results for selected testproblems illustrates the convergence of the adaptive finiteelement method.
A numerically inexpensive globalization strategy of sequential quadratic programming methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated. Based on the proper functional analytic setting a convergence analysis for the globalized methodis given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical test demonstrates the feasibility of the approach.
We consider the identification of a distributed parameter in an ellipticvariational inequality. On the basis of an optimal control problemformulation, the application of a primal-dual penalizationtechnique enables us to prove the existenceof multipliers giving a first order characterization of the optimal solution.Concerning the parameter we consider differentregularity requirements. For the numerical realization we utilize a complementarity function,which allows us to rewrite the optimality conditions as a set of equalities.Finally, numerical results obtained from a least squares type algorithmemphasize the feasibility of our approach.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.