We prove that (a) if R is a commutative coherent ring, the weak global dimension of R equals the supremum of the flat (or (FP–)injective) dimensions of the simple R-modules; (b) if R is right semi-artinian, the weak (respectively, the right) global dimension of R equals the supremum of the flat (respectively, projective) dimensions of the simple right R-modules; (c) if R is right semi-artinian and right coherent, the weak global dimension of R equals the supremum of the FP-injective dimensions of the simple right R-modules.