We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The COVID-19 pandemic has impacted various aspects of daily life, leading to increased psychological symptoms and changes in alcohol use, yet little is known about their specific interactions, particularly early stages during the pandemic. We examined the relationship between psychological symptoms and alcohol-related behaviors associated with COVID-19, and determined whether associations shifted already early during the pandemic and whether changes in psychological symptoms from the pre- to during COVID-19 impacted changes in alcohol consumption.
Methods
Participants were young adults from a longitudinal cohort (N=435, age: 22–25) from two time points. We applied paired samples t-tests, correlation analyses, SHapley Additive exPlanations, and classification models to examine the multiple associations between psychological symptoms and alcohol use directly pre- and early during COVID-19.
Results
We found significant associations between psychological symptoms and alcohol use pre- compared to during COVID-19. Anxiety was the strongest factor influencing alcohol use pre-pandemic, depression had the greatest impact during COVID-19. Changes in anxiety from pre- to during COVID-19 were the main factor associated with an increase in alcohol use, while changes in depression appeared to be most predictive for a decrease/persistence in alcohol use.
Conclusion
These findings suggest a shift in the association between psychological symptoms and alcohol use following COVID-19, as well as a differential impact of psychological symptoms, depending on their changes related to the pandemic. Changes in anxiety may contribute to riskier alcohol use behaviors following the pandemic, while depression appears to be one of the most critical factors influencing alcohol use during such crisis situations.
Recent advances in natural language processing (NLP), particularly in language processing methods, have opened new avenues in semantic data analysis. A promising application of NLP is data harmonization in questionnaire-based cohort studies, where it can be used as an additional method, specifically when only different instruments are available for one construct as well as for the evaluation of potentially new construct-constellations. The present article therefore explores embedding models’ potential to detect opportunities for semantic harmonization.
Methods
Using models like SBERT and OpenAI’s ADA, we developed a prototype application (“Semantic Search Helper”) to facilitate the harmonization process of detecting semantically similar items within extensive health-related datasets. The approach’s feasibility and applicability were evaluated through a use case analysis involving data from four large cohort studies with heterogeneous data obtained with a different set of instruments for common constructs.
Results
With the prototype, we effectively identified potential harmonization pairs, which significantly reduced manual evaluation efforts. Expert ratings of semantic similarity candidates showed high agreement with model-generated pairs, confirming the validity of our approach.
Conclusions
This study demonstrates the potential of embeddings in matching semantic similarity as a promising add-on tool to assist harmonization processes of multiplex data sets and instruments but with similar content, within and across studies.
Disruptive behavior disorders (DBD) are heterogeneous at the clinical and the biological level. Therefore, the aims were to dissect the heterogeneous neurodevelopmental deviations of the affective brain circuitry and provide an integration of these differences across modalities.
Methods
We combined two novel approaches. First, normative modeling to map deviations from the typical age-related pattern at the level of the individual of (i) activity during emotion matching and (ii) of anatomical images derived from DBD cases (n = 77) and controls (n = 52) aged 8–18 years from the EU-funded Aggressotype and MATRICS consortia. Second, linked independent component analysis to integrate subject-specific deviations from both modalities.
Results
While cases exhibited on average a higher activity than would be expected for their age during face processing in regions such as the amygdala when compared to controls these positive deviations were widespread at the individual level. A multimodal integration of all functional and anatomical deviations explained 23% of the variance in the clinical DBD phenotype. Most notably, the top marker, encompassing the default mode network (DMN) and subcortical regions such as the amygdala and the striatum, was related to aggression across the whole sample.
Conclusions
Overall increased age-related deviations in the amygdala in DBD suggest a maturational delay, which has to be further validated in future studies. Further, the integration of individual deviation patterns from multiple imaging modalities allowed to dissect some of the heterogeneity of DBD and identified the DMN, the striatum and the amygdala as neural signatures that were associated with aggression.
Brain imaging studies have shown altered amygdala activity during emotion processing in children and adolescents with oppositional defiant disorder (ODD) and conduct disorder (CD) compared to typically developing children and adolescents (TD). Here we aimed to assess whether aggression-related subtypes (reactive and proactive aggression) and callous-unemotional (CU) traits predicted variation in amygdala activity and skin conductance (SC) response during emotion processing.
Methods
We included 177 participants (n = 108 cases with disruptive behaviour and/or ODD/CD and n = 69 TD), aged 8–18 years, across nine sites in Europe, as part of the EU Aggressotype and MATRICS projects. All participants performed an emotional face-matching functional magnetic resonance imaging task.
Results
Differences between cases and TD in affective processing, as well as specificity of activation patterns for aggression subtypes and CU traits, were assessed. Simultaneous SC recordings were acquired in a subsample (n = 63). Cases compared to TDs showed higher amygdala activity in response to negative faces (fearful and angry) v. shapes. Subtyping cases according to aggression-related subtypes did not significantly influence on amygdala activity; while stratification based on CU traits was more sensitive and revealed decreased amygdala activity in the high CU group. SC responses were significantly lower in cases and negatively correlated with CU traits, reactive and proactive aggression.
Conclusions
Our results showed differences in amygdala activity and SC responses to emotional faces between cases with ODD/CD and TD, while CU traits moderate both central (amygdala) and peripheral (SC) responses. Our insights regarding subtypes and trait-specific aggression could be used for improved diagnostics and personalized treatment.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.