We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Increasing penetration of variable and intermittent renewable energy resources on the energy grid poses a challenge for reliable and efficient grid operation, necessitating the development of algorithms that are robust to this uncertainty. However, standard algorithms incorporating uncertainty for generation dispatch are computationally intractable when costs are nonconvex, and machine learning-based approaches lack worst-case guarantees on their performance. In this work, we propose a learning-augmented algorithm, RobustML, that exploits the good average-case performance of a machine-learned algorithm for minimizing dispatch and ramping costs of dispatchable generation resources while providing provable worst-case guarantees on cost. We evaluate the algorithm on a realistic model of a combined cycle cogeneration plant, where it exhibits robustness to distribution shift while enabling improved efficiency as renewables penetration increases.
Email your librarian or administrator to recommend adding this to your organisation's collection.