In this paper, we exploit a new series summation and convergence improvement technique (that is, Drazin and Tourigny [5]), in order to study the steady flow of a viscous incompressible fluid both in a porous pipe with moving walls and an exponentially diverging asymmetrical channel. The solutions are expanded into Taylor series with respect to the corresponding Reynolds number. Using the D-T method, the bifurcation and the internal flow separation studies are performed.