We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let Λ ⊂ Ω ⊂ ℝnbe open subsets. We construct a natural space of test functions on Λ such that the dual consists exactly of those distributions on Λ which can be extended to distributions on Ω. As an application of this representation we calculate the space of multiplication operators on as well as the space of absolutely regular extendable distributions.
Let be a linear partial differential operator with C∞- coefficients. The study of P(∂) as an operator in L2(ℝn) usually starts with the investigation of the minimal operator P0 which is the closure of P(∂) acting on . In the case of constant coefficients it is known that the domain D(P0) of P0 at least contains the space (cf. Schechter [4, p. 58, Lemma 1.2]).
We prove a result on compactness properties of Fréchet-derivatives which implies that the Fréchet-derivative of a weakly compact map between Banach spaces is weakly compact. This result is applied to characterize certain weakly compact composition operators on Sobolev spaces which have application in the theory of nonlinear integral equations and in the calculus of variations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.