We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Breakthrough Listen is a 10-yr initiative to search for signatures of technologies created by extraterrestrial civilisations at radio and optical wavelengths. Here, we detail the digital data recording system deployed for Breakthrough Listen observations at the 64-m aperture CSIRO Parkes Telescope in New South Wales, Australia. The recording system currently implements two modes: a dual-polarisation, 1.125-GHz bandwidth mode for single-beam observations, and a 26-input, 308-MHz bandwidth mode for the 21-cm multibeam receiver. The system is also designed to support a 3-GHz single-beam mode for the forthcoming Parkes ultra-wideband feed. In this paper, we present details of the system architecture, provide an overview of hardware and software, and present initial performance results.
Bryozoans are an important part of the benthic marine fauna in a wide variety of modern environments and are found in rock forming abundance in a number of settings throughout much of the Phanerozoic. Bryozoologists and nonspecialists have grouped taxa into colonial growth forms (e.g., erect fenestrates or encrusting sheets), both to simplify analyses and because correlations exist between some colony growth forms and the environmental conditions in which the organism lived. These correlations allow for the possibility of paleoenvironmental analyses based on skeletons alone. Existing bryozoan colonial growth form classifications do not, however, fully exploit the ecological information present in colony form.
A new scheme is proposed here (Analytical Bryozoan Growth Habit Classification), which provides a list of colony-level morphological characteristics for bryozoan growth habits. This differs from previous approaches to bryozoan growth form analysis in that it is a classification of growth habit characteristics rather than a classification of morphological groups as such. The classification is based on eleven character classes, which describe the orientation of the colony and its occupation of, and placement in space. The overall colony shape is described based on the arrangement of modules in colonial growth. This classification provides a common ground for systematic comparison of character states among varied bryozoan growth habits. This approach allows for the evaluation of correlations among observed morphological character states and specific environmental conditions in which they develop. In addition, these growth habit characters can be used to recognize, characterize, evaluate, and apply more traditional growth form groups in broader studies.
Email your librarian or administrator to recommend adding this to your organisation's collection.