We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Diets closer aligned with nutritional guidelines could lower the risk of several chronic conditions and improve economic outcomes, such as employment and healthcare costs. However, little is known about the range, order of magnitude and timing of these potential effects.
Design:
We used a microsimulation approach to predict US population changes over 30 years in health and economic outcomes that could result from a substantial (but not impossible) improvement in diet quality – an improvement from the third to the fifth quintile of US scores on the Alternate Healthy Eating Index, 2010 version.
Setting:
Risk ratios from the literature for diabetes, heart disease and stroke were used to modify the Future Adult Model (FAM) to simulate outcomes from a higher-quality diet. Model parameter uncertainty was assessed using bootstrap and sensitivity analysis examined the variation in published risk ratios.
Participants:
FAM simulates outcomes for the US adult population aged 25 and older.
Results:
Improved diet quality initially leads to very small changes in chronic disease prevalence, but these accumulate over time. If diets improved beginning in 2019, after 30 years diabetes prevalence could be reduced by 5·9 million cases (11·5 %), heart disease prevalence by 4·0 million cases (7·2 %) and stroke prevalence by 1·9 million cases (10·3 %). These reductions in disease prevalence would be accompanied that same year by fewer deaths (88 000) and healthcare cost savings of $144·0 billion (2019 USD).
Conclusions:
This microsimulation study suggests that improvements in diet are likely to improve health and economic population outcomes over time.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.