For the
$n$ -th order nonlinear differential equation,
${{y}^{(n)}}\,=\,f(x,\,y,\,y\prime ,\ldots ,\,{{y}^{(n-1)}})$ , we consider uniqueness implies uniqueness and existence results for solutions satisfying certain
$(k\,+\,j)$ -point boundary conditions for
$1\,\le \,j\,\le \,n\,-\,1$ and
$1\,\le \,k\,\le \,n\,-\,j$ . We define
$(k;\,j)$ -point unique solvability in analogy to
$k$ -point disconjugacy and we show that
$(n\,-\,{{j}_{0}};\,{{j}_{0}})$ -point unique solvability implies
$(k;\,j)$ -point unique solvability for
$1\,\le \,j\,\le \,{{j}_{0}}$ , and
$1\,\le \,k\,\le \,n\,-\,j$ . This result is analogous to
$n$ -point disconjugacy implies
$k$ -point disconjugacy for
$2\,\le \,k\,\le \,n\,-\,1$ .