We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the fluid–structure interaction of a three-dimensional (3-D) flexible membrane immersed in an unsteady separated flow at moderate Reynolds numbers. We employ a body-conforming variational fluid–structure interaction solver based on the recently developed partitioned iterative scheme for the coupling of turbulent fluid flow with nonlinear structural dynamics. Of particular interest is to understand the flow-excited instability of a 3-D flexible membrane as a function of the non-dimensional mass ratio ($m^{*}$), Reynolds number ($Re$) and aeroelastic number ($Ae$). For a wide range of parameters, we examine two distinct stability regimes of the fluid–membrane interaction: deformed steady state (DSS) and dynamic balance state (DBS). We propose stability phase diagrams to demarcate the DSS and DBS regimes for the parameter space of mass ratio versus Reynolds number ($m^{*}$-$Re$) and mass ratio versus aeroelastic number ($m^{*}$-$Ae$). With the aid of the global Fourier mode decomposition technique, the distinct dominant vibrational modes are identified from the intertwined membrane responses in the parameter space of $m^{*}$-$Re$ and $m^{*}$-$Ae$. Compared to the deformed steady membrane, the flow-excited vibration produces relatively longer attached leading-edge vortices which improve the aerodynamic performance when the coupled system is near the flow-excited instability boundary. The optimal aerodynamic performance is achieved for lighter membranes with higher $Re$ and larger flexibility. Based on the global aeroelastic mode analysis, we observe a frequency lock-in phenomenon between the vortex-shedding frequency and the membrane vibration frequency causing self-sustained vibrations in the dynamic balance state. To characterize the origin of the frequency lock-in, we propose an approximate analytical formula for the nonlinear natural frequency by considering the added mass effect and employing a large deflection theory for a simply supported rectangular membrane. Through our systematic high-fidelity numerical investigation, we find that the onset of the membrane vibration and the mode transition has a direct dependence on the frequency lock-in between the natural frequency of the tensioned membrane and the vortex-shedding frequency or its harmonics. These findings on the fluid-elastic instability of membranes have implications for the design and development of control strategies for membrane wing-based unmanned systems and drones.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.