We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate the patterns of recurrence following postoperative conformal radiotherapy (RT) for intracranial meningioma.
Materials and methods:
Eighty-six patients who received conformal RT for intracranial meningiomas from 2014 to 2017 were retrospectively analysed. For documented recurrences, recurrence imaging was deformably co-registered to planning CT scan. In-field recurrence was defined as recurrence within the 90% isodose line, and out-of-field recurrences were those that occurred outside the 90% isodose line. We present the demographic details, surgical and RT details, outcomes and patterns of recurrence.
Results:
The median age was 46 years (range 17–72); 82·6% underwent surgery [46·5% had subtotal resection (STR), 43·7% gross tumour resection (GTR), 5·6% biopsy] and 17·4% had no surgery. Among these, 53·5% were WHO grade 2; 27·9% grade 1; and 1·2% grade 3 meningioma. Fifty per cent received stereotactic RT (SRT), 46·5% 3D conformal RT (3DCRT) and 3·5% intensity-modulated RT (IMRT). The mean clinical target volume (CTV) and planning target volume (PTV) margins were 4·5 mm (range 0–15) and 3·9 mm (range 1–5), respectively. The doses ranged from 54 to 59·4 Gy. The median follow-up after RT was 1·7 years (range 0·2–4·7). 17·4% were lost to follow-up, 5·4% had recurrence, and the median time to recurrence after completion of RT was 2 years (range 0·7–2·9). The 3-year recurrence-free rate was 81·5%. Three patients had in-field and two had in-field and out-of-field recurrence. Among the cases with recurrence, three received SRT, one 3DCRT and one IMRT. Four were grade 2 and one was grade 3 tumour, and the CTV margin ranged from 0 to 5 mm, and the PTV margin ranged from 3 to 5 mm.
Conclusion:
Local recurrence was seen in grade 2 and 3 meningiomas. SRT probably had more recurrence as they had lesser CTV margin. Increased CTV margin, escalated dose up to 59·4 Gy and 3DCRT/IMRT may be helpful in preventing local recurrences in grade 2 and grade 3 meningiomas.
The coronavirus disease (COVID-19) pandemic is bound to put tremendous pressure on the existing healthcare system. This aim of this technical note is to help in triaging patients with brain tumours who are sent for radiotherapy during this pandemic and to provide safe and evidence-based care.
Materials and Methods:
Published data for this review were identified by systematically searching PubMed database from November 2007 onwards with the following Medical Subject Heading (Mesh) terms ‘Brain tumours’, ‘COVID-19’, ‘coronavirus’, ‘SARS-nCoV-2’, ‘Radiotherapy’, ‘Guidelines’ ‘hypofractionation’ using Boolean search algorithm. Articles in English language were reviewed.
Results:
We tried to apply the as low as reasonable achievable (ALARA) principle in triaging and management of patients for radiotherapy. We identified protocols which have hypofractionated regimens (reducing patient visits to hospital, time spent in treatment console) with similar outcomes when compared to conventional fractionated regimens and not overburdening the healthcare facility. We also identified the tumours for which we could safely avoid or delay the initiation of radiotherapy.
Conclusion:
Treatment decisions made during the COVID-19 pandemic rely on the safety first/do no harm principle and evidence-based prioritisation of cases for triage. This article is a tool to aid in triaging and prioritising brain tumour patient management. This is for consideration during the pandemic only and certainly not as a strategy for permanent practice change.
To analyse the presentation, diagnosis and patterns of care of extraosseous Ewing sarcoma treated at our institution between 2008 and 2018.
Methods:
Electronic medical records of extraosseous Ewing sarcoma patients treated at our institution between January 2008 and April 2018 were reviewed. Kaplan–Meier curves were plotted to assess the overall and disease-free survival with 95% confidence intervals. A univariate analysis was carried out to assess the impact of variables such as surgical excision, completeness of surgery, completeness of chemotherapy and addition of radiation therapy on the survivorship.
Results:
The records of 65 patients treated at our institution were available for review. The mean age was 26·4 years. The most frequent sites of extraosseous Ewing tumour were kidney—9/65 (13·8%) and brain—10/65 (15·4%). Sixteen (24·6%) patients presented with inoperable/metastatic disease at diagnosis. The other 49 (75·4%) had localised disease at presentation. The median overall survival of the 49 non-metastatic patients was 46 months, and the disease-free survival was 45 months.
Conclusion:
Extraosseous Ewing sarcoma is a rare and aggressive tumour diagnosed by molecular techniques. Multi-modality treatment including surgical resection with wide margins, adjuvant radiation when indicated and completion of systemic chemotherapy results in optimum outcomes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.