We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Spontaneous capillary imbibition is a classical problem in interfacial fluid dynamics with a broad range of applications, from microfluidics to agriculture. Here we study the duration of the cross-over between an initial linear growth of the imbibition front to the diffusive-like growth limit of Washburn's law. We show that local-resistance sources, such as the inertial resistance and the friction caused by the advancing meniscus, always limit the motion of an imbibing front. Both effects give rise to a cross-over of the growth exponent between the linear and the diffusive-like regimes. We show how this cross-over is much longer than previously thought – even longer than the time it takes the liquid to fill the porous medium. Such slowly slowing-down dynamics is likely to cause similar long cross-over phenomena in processes governed by wetting.
We present a theoretical study of the statics and dynamics of a partially wetting liquid droplet, of equilibrium contact angle $\unicode[STIX]{x1D703}_{e}$, confined in a solid wedge geometry of opening angle $\unicode[STIX]{x1D6FD}$. We focus on a mostly non-wetting regime, given by the condition $\unicode[STIX]{x1D703}_{e}-\unicode[STIX]{x1D6FD}>90^{\circ }$, where the droplet forms a liquid barrel – a closed shape of positive mean curvature. Using a quasi-equilibrium assumption for the shape of the liquid–gas interface, we compute the changes to the surface energy and pressure distribution of the liquid upon a translation along the symmetry plane of the wedge. Our model is in good agreement with numerical calculations of the surface energy minimisation of static droplets deformed by gravity. Beyond the statics, we put forward a Lagrangian description of the droplet dynamics. We focus on the overdamped limit, where the driving capillary force is balanced by the frictional forces arising from the bulk hydrodynamics, the corner flow near the contact lines and the contact-line friction. Our results provide a theoretical framework to describe the motion of partially wetting liquids in confinement, and can be used to gain further understanding on the relative importance of dissipative processes that span from microscopic to macroscopic length scales.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.