We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
We study the effects of having an opening in a vertical cylinder of an arbitrary cross-sectional shape when subjected to incident waves from the outside field. Both the diffraction and radiation problems of linear potential-flow theory are addressed. The cylinders considered are bottom-mounted with vanishing thickness and the problem is formulated as a hypersingular boundary-integral method. A simple higher-order procedure is presented to handle the strong singularity. Comparisons are made between the hydrodynamic properties of open and closed cylinders, and the effects of increasing the opening size are discussed and explained. Results for square, circular and elliptical open cylindrical shells, presented as examples, indicate that wave loads on the structures could be dramatically decreased to zero (effectively) at certain frequencies and opening sizes. This leads to the surprising conclusion that directing an open structure into the incident-wave field results in lower loads on the structure. A model of an open harbour with a frontal breakwater in a wave field, inspired by the idea of the Portunus Project, is also analysed.
Unsteady free-surface flow at the bow of a steadily moving, two-dimensional body is solved using a modified Eulerian-Lagrangian technique. Lagrangian marker particles are distributed on both the free surface and the far-field boundary. The flow field corresponding to an inviscid, double-body solution is used for the initial condition. Solutions are obtained over a range of Froude numbers for bodies of three different shapes: a vertical step, a faired profile, and a bulbous bow. A transition Froude number exists at which the bow wave begins to overturn and break. The value of the transition Froude number depends on the bow shape. A stagnation point is observed to be present below the free surface during the initial stage of the wave formation. For flows occurring above the transition Froude number, the stagnation point remains trapped below the free surface as the wave overturns. Below the transition Froude number, the stagnation point rises to the surface as the crest of the transient bow wave moves upstream and away from the body.
The time required to pull a large object from a sandy seabed is estimated by assuming that the seabed is porous but rigid. The phenomenon of breakout (i.e., sudden release) is shown to occur without the assumption of elasticity of the soil skeleton (Foda 1982). A new case of wedge-shaped gap is also studied, and compared to a uniform gap, Laboratory experiments are shown to support the theory.
The unsteady hydrodynamic interaction of two bodies moving in a shallow fluid is examined by applying slender-body theory. The bodies are assumed to be in each other's far field and the free surface is assumed to be rigid. By matched asymptotics, the inner and outer problems are formulated and a pair of coupled integro-differential equations for determining the unknown cross-flows is derived. The degree of coupling is shown to be related to a bottom-clearance parameter. Expressions are given for the unsteady sinkage force, trimming moment, sway force, and yaw moment. Numerical calculations for two weakly coupled cases are presented. One corresponds to the interaction of a stationary body with a passing one, the other to the interaction of two bodies moving in a steady configuration. Theoretical results are compared with existing experimental data.
Email your librarian or administrator to recommend adding this to your organisation's collection.