The isopropyl alcohol gas sensitivity of LaCrO3 at 250 °C is found to depend on the amount of TiO2 content and cation stoichiometric ratio of the sample. The gas sensitivity enhancement is related to the defect structure and electrical conduction behavior of p-type, donor-doped semiconductive oxides. The high resistivity coupled with the increasing point defects by the donor dopants are responsible for the high gas sensitivity of TiO2 doped LaCrO3. It is believed that the positively charged ionic-type defects created by dopants act as trapping sites to adsorb oxygen.