We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathcal {A}$ be an abelian length category containing a d-cluster tilting subcategory $\mathcal {M}$. We prove that a subcategory of $\mathcal {M}$ is a d-torsion class if and only if it is closed under d-extensions and d-quotients. This generalises an important result for classical torsion classes. As an application, we prove that the d-torsion classes in $\mathcal {M}$ form a complete lattice. Moreover, we use the characterisation to classify the d-torsion classes associated to higher Auslander algebras of type $\mathbb {A}$, and give an algorithm to compute them explicitly. The classification is furthermore extended to the setup of higher Nakayama algebras.
Let $k$ be a commutative ring, let ${\mathcal{C}}$ be a small, $k$-linear, Hom-finite, locally bounded category, and let ${\mathcal{B}}$ be a $k$-linear abelian category. We construct a Frobenius exact subcategory ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))$ of the functor category ${\mathcal{B}}^{{\mathcal{C}}}$, and we show that it is a subcategory of the Gorenstein projective objects ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ in ${\mathcal{B}}^{{\mathcal{C}}}$. Furthermore, we obtain criteria for when ${\mathcal{G}}{\mathcal{P}}({\mathcal{G}}{\mathcal{P}}_{P}({\mathcal{B}}^{{\mathcal{C}}}))={\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$. We show in examples that this can be used to compute ${\mathcal{G}}{\mathcal{P}}({\mathcal{B}}^{{\mathcal{C}}})$ explicitly.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.