We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A Cantor action is a minimal equicontinuous action of a countably generated group $G$ on a Cantor space $X$. Such actions are also called generalized odometers in the literature. In this work, we introduce two new conjugacy invariants for Cantor actions, the stabilizer limit group and the centralizer limit group. An action is wild if the stabilizer limit group is an increasing sequence of stabilizer groups without bound and otherwise is said to be stable if this group chain is bounded. For Cantor actions by a finitely generated group $G$, we prove that stable actions satisfy a rigidity principle and furthermore show that the wild property is an invariant of the continuous orbit equivalence class of the action. A Cantor action is said to be dynamically wild if it is wild and the centralizer limit group is a proper subgroup of the stabilizer limit group. This property is also a conjugacy invariant and we show that a Cantor action with a non-Hausdorff element must be dynamically wild. We then give examples of wild Cantor actions with non-Hausdorff elements, using recursive methods from geometric group theory to define actions on the boundaries of trees.
We consider the dynamical properties of $C^{\infty }$-variations of the flow on an aperiodic Kuperberg plug $\mathbb{K}$. Our main result is that there exists a smooth one-parameter family of plugs $\mathbb{K}_{\unicode[STIX]{x1D716}}$ for $\unicode[STIX]{x1D716}\in (-a,a)$ and $a<1$, such that: (1) the plug $\mathbb{K}_{0}=\mathbb{K}$ is a generic Kuperberg plug; (2) for $\unicode[STIX]{x1D716}<0$, the flow in the plug $\mathbb{K}_{\unicode[STIX]{x1D716}}$ has two periodic orbits that bound an invariant cylinder, all other orbits of the flow are wandering, and the flow has topological entropy zero; (3) for $\unicode[STIX]{x1D716}>0$, the flow in the plug $\mathbb{K}_{\unicode[STIX]{x1D716}}$ has positive topological entropy, and an abundance of periodic orbits.
We show that the strongest stable foliations associated with the generators of a Cartan action on a compact infra-nilmanifold are invaraint under topological conjugacy. This has the corollary that a Cartan action on a compact infra-nilmanifold with constant exponents is smoothly conjugate to an affine action.
We study the various notions of spectrum for an action α of a locally compact abelian group G on a type IC*-algebra A, and discuss how these are related to the structure of the crossed product A ⋊αG. In the case where A has continuous trace and the action of G on  is minimal, we completely describe the ideal structure of the crossed product. A key role is played by the restriction of α to a certain ‘symmetrizer subgroup’ S of the common stabilizer in G of the points of Â. We show by example that, contrary to a conjecture of Bratteli, it is possble for A⋊G to be primitive but not simple, provided that S is not discrete. In such cases, the Connes spectrum Γ(α) differs from the strong Connes spectrum of Kishimoto. The counterexamples come from subtle phenomena in topological dynamics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.