We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
In 785 mother–child (50% male) pairs from a longitudinal epidemiological birth cohort, we investigated associations between inflammation-related epigenetic polygenic risk scores (i-ePGS), environmental exposures, cognitive function, and child and adolescent internalizing and externalizing problems. We examined prenatal and postnatal effects. For externalizing problems, one prenatal effect was found: i-ePGS at birth associated with higher externalizing problems (ages 7–15) indirectly through lower cognitive function (age 7). For internalizing problems, we identified two effects. For a prenatal effect, i-ePGS at birth associated with higher internalizing symptoms via continuity in i-ePGS at age 7. For a postnatal effect, higher postnatal adversity exposure (birth through age 7) associated with higher internalizing problems (ages 7–15) via higher i-ePGS (age 7). Hence, externalizing problems were related mainly to prenatal effects involving lower cognitive function, whereas internalizing problems appeared related to both prenatal and postnatal effects. The present study supports a link between i-ePGS and child and adolescent mental health.
Little is currently known about how maternal depression symptoms and unhealthy nutrition during pregnancy may developmentally interrelate to negatively affect child cognitive function.
To test whether prenatal maternal depression symptoms predict poor prenatal nutrition, and whether this in turn prospectively associates with reduced postnatal child cognitive function.
In 6979 mother–offspring pairs participating in the Avon Longitudinal Study of Parents and Children (ALSPAC) in the UK, maternal depression symptoms were assessed five times between 18 weeks gestation and 33 months old. Maternal reports of the nutritional environment were assessed at 32 weeks gestation and 47 months old, and child cognitive function was assessed at age 8 years.
During gestation, higher depressive symptoms were related to lower levels of healthy nutrition and higher levels of unhealthy nutrition, each of which in turn was prospectively associated with reduced cognitive function. These results were robust to postnatal depression symptoms and nutrition, as well as a range of potential prenatal and postnatal confounds (i.e. poverty, teenage mother, low maternal education, parity, birth complications, substance use, criminal lifestyle, partner cruelty towards mother).
Prenatal interventions aimed at the well-being of children of parents with depression should consider targeting the nutritional environment.
Email your librarian or administrator to recommend adding this to your organisation's collection.