We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the enumerativity of Gromov–Witten invariants where the domain curve is fixed in moduli and required to pass through the maximum possible number of points. We say a Fano manifold satisfies asymptotic enumerativity if such invariants are enumerative whenever the degree of the curve is sufficiently large. Lian and Pandharipande speculate that every Fano manifold satisfies asymptotic enumerativity. We give the first counterexamples, as well as some new examples where asymptotic enumerativity holds. The negative examples include special hypersurfaces of low Fano index and certain projective bundles, and the new positive examples include many Fano threefolds and all smooth hypersurfaces of degree $d \leq (n+3)/3$ in ${\mathbb P}^n$.
We conjecture that the exceptional set in Manin's conjecture has an explicit geometric description. Our proposal includes the rational point contributions from any generically finite map with larger geometric invariants. We prove that this set is contained in a thin subset of rational points, verifying that there is no counterexample to Manin's conjecture which arises from an incompatibility of geometric invariants.
Let $X$ be a smooth projective Fano variety over the complex numbers. We study the moduli space of rational curves on $X$ using the perspective of Manin’s conjecture. In particular, we bound the dimension and number of components of spaces of rational curves on $X$. We propose a geometric Manin’s conjecture predicting the growth rate of a counting function associated to the irreducible components of these moduli spaces.
We consider the problem of counting the number of rational points of bounded height in the zero-loci of Brauer group elements on semi-simple algebraic groups over number fields. We obtain asymptotic formulae for the counting problem for wonderful compactifications using the spectral theory of automorphic forms. Applications include asymptotic formulae for the number of matrices over $\mathbb{Q}$ whose determinant is a sum of two squares. These results provide a positive answer to some cases of a question of Serre concerning such counting problems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.