We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The impact of a collapsing gas bubble above rigid, notched walls is considered. Such surface crevices and imperfections often function as bubble nucleation sites, and thus have a direct relation to cavitation-induced erosion and damage structures. A generic configuration is investigated numerically using a second-order accurate compressible multi-component flow solver in a two-dimensional axisymmetric coordinate system. Results show that the crevice geometry has a significant effect on the collapse dynamics, jet formation, subsequent wave dynamics and interactions. The wall-pressure distribution associated with erosion potential is a direct consequence of development and intensity of these flow phenomena.
Observations in experiments and simulations show that the kinematic behaviour of an elastic capsule, suspended and rotating in shear flow, depends upon the flow strength, the capsule membrane material properties and its at-rest shape. We develop a linear stability description of the periodically rotating base state of this coupled system, as represented by a boundary integral flow formulation with spherical harmonic basis functions describing the elastic capsule geometry. This yields Floquet multipliers that classify the stability of the capsule motion for elastic capillary numbers $Ca$ ranging from $Ca=0.01$ to 5. Viscous dissipation rapidly damps most perturbations. However, for all cases, a single component grows or decays slowly, depending upon $Ca$, over many periods of the rotation. The transitions in this stability behaviour correspond to the different classes of rotating motion observed in previous studies.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.