We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements ($7000 \lesssim \delta ^+ \lesssim 7800$), existing lower Reynolds number experimental ($\delta ^+ \approx 1000$) and computational ($\delta ^+<800$) data sets, where $\delta ^+$ is the friction Reynolds number. In the present experimental set-up the boundary layer is under modest APG conditions, where the Clauser PG parameter $\beta$ is ${\leq }1.8$. Well-resolved hot-wire measurements are obtained at the Flow Physics Facility at the University of New Hampshire in the region of an APG ramp. Comparisons are made with zero pressure-gradient turbulent boundary layer (ZPG TBL) experimental data at similar Reynolds number and numerical simulation data at lower Reynolds number. The main aims of the present study centre on the inertial sublayer of the APG TBL and the degree to which its characteristics are similar to those of the ZPG TBL. This investigation utilizes equation-based analyses and empirical approaches. Among other results, the data suggest that even though the APG TBL streamwise variance does not exhibit a logarithmic profile (unlike the ZPG TBL) both ZPG and APG TBLs exhibit distance-from-the-wall scaling on the inertial sublayer. Theoretical arguments suggest that wall-distance scaling resulting from a self-similar dynamics is consistent with both a single velocity scale leading to a log-law in mean velocity profile as well as multiple velocity scales leading to a power-law mean velocity profile.