We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a continuous dynamical system $f:X\rightarrow X$ on a compact metric space $X$ equipped with an $m$-dimensional continuous potential $\unicode[STIX]{x1D6F7}=(\unicode[STIX]{x1D719}_{1},\ldots ,\unicode[STIX]{x1D719}_{m}):X\rightarrow \mathbb{R}^{m}$. We study the set of ground states $GS(\unicode[STIX]{x1D6FC})$ of the potential $\unicode[STIX]{x1D6FC}\cdot \unicode[STIX]{x1D6F7}$ as a function of the direction vector $\unicode[STIX]{x1D6FC}\in S^{m-1}$. We show that the structure of the ground state sets is naturally related to the geometry of the generalized rotation set of $\unicode[STIX]{x1D6F7}$. In particular, for each $\unicode[STIX]{x1D6FC}$ the set of rotation vectors of $GS(\unicode[STIX]{x1D6FC})$ forms a non-empty, compact and connected subset of a face $F_{\unicode[STIX]{x1D6FC}}(\unicode[STIX]{x1D6F7})$ of the rotation set associated with $\unicode[STIX]{x1D6FC}$. Moreover, every ground state maximizes entropy among all invariant measures with rotation vectors in $F_{\unicode[STIX]{x1D6FC}}(\unicode[STIX]{x1D6F7})$. We further establish the occurrence of several quite unexpected phenomena. Namely, we construct for any $m\in \mathbb{N}$ examples with an exposed boundary point (that is, $F_{\unicode[STIX]{x1D6FC}}(\unicode[STIX]{x1D6F7})$ being a singleton) without a unique ground state. Further, we establish the possibility of a line segment face $F_{\unicode[STIX]{x1D6FC}}(\unicode[STIX]{x1D6F7})$ with a unique but non-ergodic ground state. Finally, we establish the possibility that the set of rotation vectors of $GS(\unicode[STIX]{x1D6FC})$ is a non-trivial line segment.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.