We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Violent behaviour by forensic psychiatric inpatients is common. We aimed to systematically review the performance of structured risk assessment tools for violence in these settings.
Methods:
The nine most commonly used violence risk assessment instruments used in psychiatric hospitals were examined. A systematic search of five databases (CINAHL, Embase, Global Health, PsycINFO and PubMed) was conducted to identify studies examining the predictive accuracy of these tools in forensic psychiatric inpatient settings. Risk assessment instruments were separated into those designed for imminent (within 24 hours) violence prediction and those designed for longer-term prediction. A range of accuracy measures and descriptive variables were extracted. A quality assessment was performed for each eligible study using the QUADAS-2. Summary performance measures (sensitivity, specificity, positive and negative predictive values, diagnostic odds ratio, and area under the curve value) and HSROC curves were produced. In addition, meta-regression analyses investigated study and sample effects on tool performance.
Results:
Fifty-two eligible publications were identified, of which 43 provided information on tool accuracy in the form of AUC statistics. These provided data on 78 individual samples, with information on 6,840 patients. Of these, 35 samples (3,306 patients from 19 publications) provided data on all performance measures. The median AUC value for the wider group of 78 samples was higher for imminent tools (AUC 0.83; IQR: 0.71–0.85) compared with longer-term tools (AUC 0.68; IQR: 0.62-0.75). Other performance measures indicated variable accuracy for imminent and longer-term tools. Meta-regression indicated that no study or sample-related characteristics were associated with between-study differences in AUCs.
Interpretation:
The performance of current tools in predicting risk of violence beyond the first few days is variable, and the selection of which tool to use in clinical practice should consider accuracy estimates. For more imminent violence, however, there is evidence in support of brief scalable assessment tools.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.