We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A large eddy simulation is performed to study secondary tones generated by a NACA0012 airfoil at angle of attack of $\alpha = 3^{\circ}$ with freestream Mach number of $M_{\infty} = 0.3$ and Reynolds number of $Re = 5 \times 10^4$. Laminar separation bubbles are observed over the suction side and near the trailing edge, on the pressure side. Vortex shedding occurs aft of the suction side separation bubble, and vortex interaction results in merging or bursting such that coherent structures or turbulent packets are advected towards the trailing edge. This mechanism modulates the amplitude of the incident pressure signal, leading to different levels of noise emission. Despite the intermittent occurrence of laminar–turbulent transition, the noise spectrum depicts a main tone with multiple equidistant secondary tones. To understand the role of flow instabilities on the tones, the linearised Navier–Stokes equations are examined in their operator form through biglobal stability and resolvent analyses, and by time evolution of disturbances using a matrix-free method. These linear global analyses reveal amplification of disturbances over the suction side separation bubble. Spanwise-averaged pressure fluctuations elucidate aspects of the acoustic feedback loop mechanism in the nonlinear solutions. This feedback process is self-sustained by acoustic waves radiated from the trailing edge, which reach the most sensitive flow location near the leading edge, as identified by the resolvent analysis. Flow disturbances arising from secondary diffraction and phase interference among the most unstable frequencies computed in the eigenspectrum are shown to have an important role in the feedback loop.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.