We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The near-infrared reflectance spectra of Pluto and its satellites are rich with diagnostic absorption bands of ices of CH4, N2, CO, H2O, and an incompletely identified ammonia-bearing molecule. Following years of investigation of the spectra of Pluto and Charon with ground-based telescopes, NASA’s New Horizons spacecraft obtained spectral maps of these bodies and three small satellites on its passage through the system on July 14, 2015, showing the distribution of these ices, as well as a colored, non-ice component. Spectral modeling mapped the distribution of the various ices and showed their abundance and mixing details in relationship to regions of differing surface elevation, albedo, and geologic structure. Additionally, owing to their greatly different degrees of volatility, the ices of Pluto are distributed in patterns responsive to Pluto’s climatic changes on both short and long terms. The surface of Charon is dominated spectrally by H2O ice with one or more ammoniated compounds, and three of the four very small satellites show both H2O ice and the ammonia signature.
The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae, and orphan afterglows of gamma-ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of 5 s and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST.
The Working Group was formed at the request of the Board of DivisionIII and approved by the IAU Executive committee in March 2004. This was in recognition of the fact that discoveries in the Trans Neptunian region were repeatedly raising the question of “what is a planet”. The task of the WG was to investigate the options available and give indications of the level of support and opposition for each if more than one option was emerging.
To describe a pseudoepidemic of infectious scleritis following eye surgery.
Methods:
Retrospective cohort study with selected procedural and laboratory investigations.
Results:
Twenty-one patients with postoperative scleritis were identified during a 2-month outbreak. Neither an infectious etiology nor a causative pre-, intra-, or postoperative exposure was found. The clinical findings, when carefully reviewed, were consistent with poor surgical-wound closure.
Conclusions:
The art of clinical diagnosis involves the subjective interpretation of clinical history, physical findings, and laboratory results. A repeated error in the interpretation of clinical findings can simulate an outbreak of disease. Clinicians may be reluctant to concede misdiagnosis
Synchrotron x-ray fluorescence microscopy has been used to study multi-metal oxide ceramics that have been designed to sequester radioactive actinide elements for long-term storage and disposal. X-ray fluorescent lines for the various elements have been used for lateral elemental mapping of the materials, and the heterogeneity of the samples is discussed with respect to the elements in the crystallographic phases that have previously been documented by other means of structural and chemical analyses.