We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to evaluate acute and late toxicities in nasopharyngeal cancer (NPC) patients who were treated between split-field (SF) and extended-field (EF) step-and-shoot intensity-modulated radiotherapy (IMRT) techniques.
Materials and methods:
Between January 2011 and October 2011, 21 NPC patients with stage I-IVB (7th edition American Joint Committee on Cancer Staging) were randomly assigned to undergo radiotherapy with SF or EF step-and-shoot IMRT technique.
Results:
At a median follow-up time of 60 months (range 3–77), we reported the comparable acute and late toxicities between the two techniques. One patient (9%) in SF-IMRT arm developed grade 3 acute skin toxicity.
Findings:
Both SF and EF step-and-shoot IMRT techniques for NPC patients did not produce any statistically significant differences in both acute and late toxicities. Although no difference in toxicity was observed, technical problems due to field matching management were the obstacles in utilisation of SF-IMRT in our routine practice.
Radiotherapy is one of the treatments used to treat prostate cancer, and dose escalation to 74–78 Gy in conventional fractionation is the standard regimen. Currently, according to the hypothesis of low alpha/beta ratio in prostate cancer cells, using hypo-fractionation has been reported in many publications with promising results. This retrospective study was designed to evaluate the implementation of a moderate hypo-fractionation regimen in high-risk prostate cancer in our division.
Materials and Methods:
Between 2012 and 2017, 40 patients with high-risk, localised prostate cancer were treated by a moderate hypo-fractionation regimen (70 Gy at 2·5 Gy per fraction) with intensity-modulated radiation therapy. The data related to treatment outcomes and toxicities were evaluated.
Results:
The mean PSA at diagnosis was 86·2 ng/mL (95% CI 49·9–122·4). Thirty-eight patients received long-term hormonal therapy. Fifty-two percent had a Gleason score of 8–10, and 65% had an initial PSA >20 ng/mL. The mean doses (in EQD2) to the D50% of PTV, D2% of organs at risk (bladder, rectum and bowels) were 80, 78·3, 76·4, and 50·2 Gy, respectively. Two patients had biochemical recurrence during the follow-up period.
Conclusion:
A moderate hypo-fractionation regimen (70 Gy at 2·5 Gy per fraction) is feasible. Our experience found that this regimen yields tolerable, acceptable toxicity profiles in high-risk, localised prostate cancer patients.
Craniospinal irradiation (CSI) has become an important and challenging radiation technique for radiation oncologists. Helical tomotherapy (HT) seems to have dosimetric advantage for CSI compared with other radiation modalities. The purpose of this study was to compare dosimetric data between two different HT plans; simultaneous integrated boost (SIB) and sequential boost (Sq).
Method
Twelve previously treated CSI contoured datasets by SIB technique were replanned. Dosimetric comparative parameters of targets were conformity index (CI) and homogeneity index (HI). For organ at risk (OARs), the mean dose of parallel organs, D2% of serial organs and whole body integral dose (ID) were also investigated.
Result
SIB plan significantly provided more conformed dose to CSI and tumour boost while resulting in a similar CI in spinal boost region compared with Sq plan. The HI showed no differences between two plans. Radiation exposure to serial organs and ID were also significantly lower in SIB plan.
Conclusion
CSI treatment using HT, SIB technique was feasible and had more target coverage while minimising the radiation dose to healthy tissues.
To report of long-term results and toxicity profiles using image-guided brachytherapy (IGBT) combined with whole pelvic radiation therapy (WPRT) for cervical carcinoma.
Materials and Methods
In total, 52 patients with locally advanced cervical carcinoma were enrolled into the study. WPRT was used to treat the clinical target volume (CTV) with a dose of 45–50·4 Gy in 23–28 fractions. IGBT using computed tomography was performed at the dose of 6·5–7 Gy×4 fractions to the minimum dose covering 90% of target volume (D90) of high-risk clinical target volume (HR-CTV).
Results
The mean cumulative dose in equivalent doses of 2 Gy for the D90 of HR-CTV, dose at 2% at refereed volume (D2cc) of bladder, D2cc of rectum and D2cc of sigmoid colon were 92·4, 87·9, 69·6, and 72 Gy, respectively. At the median follow-up time of 61 months, the 5-year local control, disease-free survival, and overall survival rates were 96·2, 75 and 84·6% respectively. Two patients (3·8%) developed grade 3–4 gastrointestinal and two patients (3·8%) developed grade 3–4 genitourinal toxicities.
Conclusion
The combination of WPRT plus IGBT showed very promising long-term results with excellent local control and toxicity profiles.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.