We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The notions of majorizing mappings and cone-absolutely summing mappings are studied in the locally convex Riesz space setting. It is shown that a locally convex Riesz space Y is an M-space in the sense of Jameson (1970) if and only if, for any locally convex space E, every continuous linear map from E into Y is majorizing. Another purpose of this note is to study the lattice properties of the vector space ℒl(X, Y) of cone-absolutely summing mappings from one locally convex Riesz space into another Y. It is shown that if Y is both locally and boundedly order complete, then ℒl(X, Y) is an l-ideal in Lb(X, Y). This improves a result of Krengel.
Recently, Levin and Saxon [5], De Wilde and Houet [2] defined the σ-barrelledness while Husain [3] defined the countable barrelledness and countable quasibarrelledness. It is well-known that barrelled spaces are countably barrelled, and countably barrelled spaces are σ-barrelled. It is natural to ask whether there is some condition for σ-barrelled (resp. countably barrelled) spaces to be countably barrelled (resp. barrelled). Using the concept of S-absorbent sequences of sets, we are able to give such conditions in Theorem 2.5 and Corollaries 2.6 and 2.7.
Let (E, ) be a topological vector space with a positive cone C. Jameson (3) says that C given an open decomposition on E if V ∩ C − V ∩ C is a -neighbourhood of 0 whenever V is a -neighbourhood of 0. The concept of open decompositions plays an important rôle in the theory of ordered topological vector spaces; see (3). It is clear that C is generating if C gives an open decomposition on E; the converse is true for Banach spaces with a closed cone, by Andô's theorem (cf. (1) or (9)). Therefore the following question arises naturally:
(Q 1) Let (E, ) be a locally convex space with a positive cone C. What condition on is necessary and sufficient for the cone C to give an open decomposition on E?
Let (E, C) be a partially ordered vector space with positive cone C. The order-bound topology Pb(6) (order topology in the terminology of Schaefer(9)) on E is the finest locally convex topology for which every order-bounded subset of E is topologically bounded.
1. Introduction. Let (X, C) be a Riesz space (or vector lattice) with positive cone C. A subset B of X is said to be solid if it follows from |x| ≤ |b| with b in B that x is in B (where |x| denotes the supremum of x and − x). The solid hull of B (absolute envelope of B in the terminology of Roberts (2)) is denoted to be the smallest solid set containing B, and is denoted by SB. A locally convex Hausdorff topology on (X, C) is called a locally solid topology if admits a neighbourhood-base of 0 consisting of solid and convex sets in X; and (X, C, ), where is a locally solid topology, is called a locally convex Riesz space.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.