We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Little is known about the effects of physical exercise on sleep-dependent consolidation of procedural memory in individuals with schizophrenia. We conducted a randomized controlled trial (RCT) to assess the effectiveness of physical exercise in improving this cognitive function in schizophrenia.
A three-arm parallel open-labeled RCT took place in a university hospital. Participants were randomized and allocated into either the high-intensity-interval-training group (HIIT), aerobic-endurance exercise group (AE), or psychoeducation group for 12 weeks, with three sessions per week. Seventy-nine individuals with schizophrenia spectrum disorder were contacted and screened for their eligibility. A total of 51 were successfully recruited in the study. The primary outcome was sleep-dependent procedural memory consolidation performance as measured by the finger-tapping motor sequence task (MST). Assessments were conducted during baseline and follow-up on week 12.
The MST performance scored significantly higher in the HIIT (n = 17) compared to the psychoeducation group (n = 18) after the week 12 intervention (p < 0.001). The performance differences between the AE (n = 16) and the psychoeducation (p = 0.057), and between the AE and the HIIT (p = 0.999) were not significant. Yet, both HIIT (p < 0.0001) and AE (p < 0.05) showed significant within-group post-intervention improvement.
Our results show that HIIT and AE were effective at reverting the defective sleep-dependent procedural memory consolidation in individuals with schizophrenia. Moreover, HIIT had a more distinctive effect compared to the control group. These findings suggest that HIIT may be a more effective treatment to improve sleep-dependent memory functions in individuals with schizophrenia than AE alone.
Numerical simulations and laboratory experiments were jointly conducted to investigate a bathtub vortex under the influence of a protruding cylinder in a rotating tank. In the set-up, a central drain hole is placed at the bottom of the tank and a top-down cylinder is suspended from the rigid top lid, with fluid supplied from the sidewall for mass conservation. The cylinder is protruded to produce the Taylor column effect. The flow pattern depends on the Rossby number ( $\mathit{Ro}= U/ fR$ ), the Ekman number (
$\mathit{Ek}= \nu / f{R}^{2} )$ and the height ratio,
$h/ H$ , where
$R$ is the radius of the cylinder,
$f$ is the Coriolis parameter,
$\nu $ is the kinematic viscosity of the fluid,
$h$ is the vertical length of the cylinder and
$H$ is the height of the tank. It is found appropriate to choose
$U$ to be the average inflow velocity of fluid entering the column beneath the cylinder. Steady-state solutions obtained by numerically solving the Navier–Stokes equations in the rotating frame are shown to have a good agreement with flow visualizations and particle tracking velocimetry (PTV) measurements. It is known that at
$\mathit{Ro}\sim 1{0}^{- 2} $ , the central downward flow surrounded by the neighbouring Ekman pumping forms a classic one-celled bathtub vortex structure when there is no protruding cylinder (
$h/ H= 0$ ). The influence of a suspended cylinder (
$h/ H\not = 0$ ) leads to several findings. The bathtub vortex exhibits an interesting two-celled structure with an inner Ekman pumping (EP) and an outer up-drafting motion, termed Taylor upwelling (TU). The two regions of up-drafting motion are separated by a notable finite-thickness structure, identified as a (thin-walled) Taylor column. The thickness
${ \delta }_{T}^{\ast } $ of the Taylor column is found to be well correlated to the height ratio and the Ekman number by
${\delta }_{T} = { \delta }_{T}^{\ast } / R= {(1- h/ H)}^{- 0. 32} {\mathit{Ek}}^{0. 095} $ . The Taylor column presents a barrier to the fluid flow such that the fluid from the inlet may only flow into the inner region through the narrow gaps, one above the Taylor column and one beneath it (conveniently called Ekman gaps). As a result, five types of routes along which the fluid may flow to and exit at the drain hole could be identified for the multi-celled vortex structure. Moreover, the flow rates associated with the five routes were calculated and compared to help understand the relative importance of the component flow structures. The weaker influence of the Taylor column effect on the bathtub vortex at
$\mathit{Ro}\sim 1$ or even higher
$\mathit{Ro}\sim 1{0}^{2} $ is also discussed.
High-quality GaP, GaP@GaN and GaN@GaP nanowires were grown by a convenient vapor deposition technique. The wire-like and two-layers structures of GaP@GaN and GaN@GaP core-shell nanowires were clearly resolved using X-ray powder diffraction and high-resolution transmission electron microscopy (HRTEM) and their growth directions were identified. Photoluminescence intensity of GaP@GaN nanowires increased as temperature increased. The result was interpreted by the piezoelectric effect induced from lattice mismatch between two semiconductor layers. An unexpected peak at 386 cm-1 was found in the Raman spectra of GaN@GaP and assigned to a surface phonon mode due to the interface. Detailed synthetic conditions and possible growth mechanisms of those nanowires were proposed.
Email your librarian or administrator to recommend adding this to your organisation's collection.