We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report a systematic study of the collective effect of thermal plumes on the probability density function (p.d.f.) $P(\delta T)$ of temperature fluctuations $\delta T(t)$ in turbulent Rayleigh–Bénard convection. By decomposing $\delta T(t)$ into four basic fluctuation modes associated with single and multiple warm and cold plumes and a turbulent background, we derive an analytic form of $P(\delta T)$ based on the convolutions of the five independent modes. To test the derived form of $P(\delta T)$ in the multiple-plume regions, where the thermal plumes are heavily populated, we conduct time series measurements of temperature fluctuations in two convection cells; one is a vertical thin disk and the other is an upright cylinder of aspect ratio unity. For a given normalized position in most regions of the convection cell, all of the measured p.d.f.s $P(\delta T)$ for different Rayleigh numbers fall onto a single master curve, once $\delta T$ is normalized by its root-mean-square (r.m.s.) value $\sigma _T$. It is found that the measured $P(\delta T/\sigma _T)$ at different locations along the symmetric horizontal and vertical axes of the convection cells can all be well described by the derived form of $P(\delta T/\sigma _T)$. The fitted values of the parameters associated with the number of plumes in multiple plume clusters and their relative strengths and degrees of intermittency are closely linked to the spatial distribution of thermal plumes and local dynamics of the large-scale circulation in a closed convection cell. Our work thus provides a unified theoretical approach for understanding scalar p.d.f.s in a turbulent field, which is very useful not only for the present study but also for the study of many turbulent mixing problems of practical interest.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.