We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A new time-dependent analysis of the global and local fluctuating velocity signals in grid turbulence is conducted to assess the scaling laws for non-equilibrium turbulence. Experimental datasets of static- and active-grid turbulence with different Rossby numbers $R_o({=}U/\varOmega M$: $U$ is the mean velocity, $\varOmega$ is the mean rotation rate and $M$ is the grid mesh size) are considered. Although the global (long-time-averaged) non-dimensional dissipation rate $C_\varepsilon$ is independent of the Reynolds number $Re_\lambda$ based on the global Taylor microscale, the local (short-time-averaged) non-dimensional dissipation rate $\left \langle C_\varepsilon (t_i) \right \rangle$ ($t_i$ is the local time) both in the static- and active-grid turbulence clearly show the non-equilibrium scaling $\left \langle C_\varepsilon (t_i)\right \rangle / \sqrt {Re_0} \propto \left \langle Re_\lambda (t_i) \right \rangle ^{-1}$ ($\left \langle Re_\lambda (t_i) \right \rangle$ and $Re_0$ are the Reynolds numbers based on the local Taylor microscale $\lambda (t_i)$ and the global integral length scale, respectively), which has only been confirmed for global statistics in the near field of grid turbulence. The local value of $\left \langle L(t_i) / \lambda (t_i) \right \rangle$ ($L(t_i)$ is the local integral length scale) shifts from the equilibrium to non-equilibrium scaling as $\left \langle Re_\lambda (t_i) \right \rangle$ increases, further confirming that the non-equilibrium scalings are recovered for local statistics both in the static- and active-grid turbulence. The local values of $\left \langle C_\varepsilon (t_i) \right \rangle$ and $\left \langle L(t_i) / \lambda (t_i) \right \rangle$ follow the theoretical predictions for global statistics (Bos & Rubinstein, Phys. Rev. Fluids, vol. 2, 2017, 022601).
The decay of stably stratified turbulence generated by a towed rake of vertical plates is investigated by direct numerical simulations (DNS) of temporally evolving grid turbulence in a linearly stratified fluid. The Reynolds number $Re_M=U_0M/\nu$ is 5000 or 10 000 while the Froude number $Fr_M=U_0/MN$ is between 0.1 and 6 ($U_0$: towing speed; $M$: mesh size; $\nu$: kinematic viscosity; $N$: Brunt–Väisälä frequency). The DNS results are compared with the theory of stably stratified axisymmetric Saffman turbulence. Here, the theory is extended to a viscosity-affected stratified flow regime with low buoyancy Reynolds number $Re_b$, and power laws are derived for the temporal variations of the horizontal velocity scale ($U_H$) and the horizontal and vertical integral length scales ($L_H$ and $L_V$). Temporal grid turbulence initialized with the mean velocity deficit of wakes exhibits a $k^{2}$ energy spectrum at a low-wavenumber range and invariance of $U_H^2L_H^2L_V$, which are the signatures of axisymmetric Saffman turbulence. The decay of various quantities follows the power laws predicted for low-$Re_b$ Saffman turbulence when $Fr_M$ is sufficiently small. However, the decay of $U_H^2$ at $Fr_M=6$ is no longer expressed by a power law with a constant exponent. This behaviour is related to the scaling of kinetic energy dissipation rate $\varepsilon$, for which $\alpha =\varepsilon /(U_H^3/L_H)$ is constant during the decay for $Fr_M\leq 1$ while it varies with time for $Fr_M=6$. We also examine the experimental data of towed-grid experiments by Praud et al. (J. Fluid Mech., vol. 522, 2005, pp. 1–33), which is shown to agree with the theory of low-$Re_b$ Saffman turbulence.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.