To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Kaplansky introduced the notions of CCR and GCR $C^{\ast }$-algebras, because they have a tractable representation theory. Many years later, he introduced the notions of CCR and GCR rings. In this paper we characterize when the algebra of an ample groupoid over a field is CCR and GCR. The results turn out to be exact analogues of the corresponding characterization of locally compact groupoids with CCR and GCR $C^{\ast }$-algebras. As a consequence, we classify the CCR and GCR Leavitt path algebras.
Let 𝔟 be the Borel subalgebra of the Lie algebra 𝔰𝔩2 and V2 be the simple two-dimensional 𝔰𝔩2-module. For the universal enveloping algebra $\[{\cal A}: = U(\gb \ltimes {V_2})\]$ of the semi-direct product 𝔟⋉V2 of Lie algebras, the prime, primitive and maximal spectra are classified. Please approve edit to the sentence “The sets of completely prime…”.The sets of completely prime ideals of $\[{\cal A}\]$ are described. The simple unfaithful $\[{\cal A}\]$-modules are classified and an explicit description of all prime factor algebras of $\[{\cal A}\]$ is given. The following classes of simple U(𝔟⋉V2)-modules are classified: the Whittaker modules, the 𝕂[X]-torsion modules and the 𝕂[E]-torsion modules.
A theorem of Burgess and Stephenson asserts that in an exchange ring with central idempotents, every maximal left ideal is also a right ideal. The proof uses sheaf-theoretic techniques. In this paper, we give a short elementary proof of this important theorem.
We show that the Gelfand–Kirillov dimension for modules over quantum Laurent polynomials is additive with respect to tensor products over the base field. We determine the Brookes–Groves invariant associated with a tensor product of modules. We study strongly holonomic modules and show that there are nonholonomic simple modules.
Inspired by the results of Adin, Postnikov and Roichman, we propose combinatorial Gelfand models for semigroup algebras of some finite semigroups, which include the symmetric inverse semigroup, the dual symmetric inverse semigroup, the maximal factorizable subsemigroup in the dual symmetric inverse semigroup and the factor power of the symmetric group. Furthermore, we extend the Gelfand model for the semigroup algebras of the symmetric inverse semigroup to a Gelfand model for the q-rook monoid algebra.
Semiclassical limits of generic multi-parameter quantized coordinate rings A=q(kn) of affine spaces are constructed and related to A, for k an algebraically closed field of characteristic zero and q a multiplicatively antisymmetric matrix whose entries generate a torsion-free subgroup of k×. A semiclassical limit of A is a Poisson algebra structure on the corresponding classical coordinate ring R=(kn), and results of Oh, Park, Shin and the authors are used to construct homeomorphisms from the Poisson-prime and Poisson-primitive spectra of R onto the prime and primitive spectra of~A. The Poisson-primitive spectrum of R is then identified with the space of symplectic cores in kn in the sense of Brown and Gordon, and an example is presented (over ℂ) for which the Poisson-primitive spectrum of R is not homeomorphic to the space of symplectic leaves in kn. Finally, these results are extended from quantum affine spaces to quantum affine toric varieties.
Let R be any ring with identity, M a unital right R-module and α ≥ 0 an ordinal. Then M is a direct sum of a semisimple module and a module having Krull dimension at most α if and only if for every submodule N of M there exists a direct summand K of M such that K ⊆ N and N/K has Krull dimension at most α.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.