To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We use potential analysis to study the properties of positive solutions of a discrete Wolff-type equation
$$ \begin{align*} w(i)=W_{\beta,\gamma}(w^q)(i), \quad i \in \mathbb{Z}^n. \end{align*} $$
Here, $n \geq 1$, $\min \{q,\beta \}>0$, $1<\gamma \leq 2$ and $\beta \gamma <n$. Such an equation can be used to study nonlinear problems on graphs appearing in the study of crystal lattices, neural networks and other discrete models. We use the method of regularity lifting to obtain an optimal summability of positive solutions of the equation. From this result, we obtain the decay rate of $w(i)$ when $|i| \to \infty $.
In this paper, we analyse nonlocal equations in perforated domains. We consider nonlocal problems of the form $f(x) = \int \nolimits _{B} J(x-y) (u(y) - u(x)) {\rm d}y$ with x in a perforated domain $\Omega ^\epsilon \subset \Omega $. Here J is a nonsingular kernel. We think about $\Omega ^\epsilon $ as a fixed set Ω from where we have removed a subset that we call the holes. We deal both with the Neumann and Dirichlet conditions in the holes and assume a Dirichlet condition outside Ω. In the latter case we impose that u vanishes in the holes but integrate in the whole ℝN (B = ℝN) and in the former we just consider integrals in ℝN minus the holes ($B={\open R} ^N \setminus (\Omega \setminus \Omega ^\epsilon )$). Assuming weak convergence of the holes, specifically, under the assumption that the characteristic function of $\Omega ^\epsilon $ has a weak limit, $\chi _{\epsilon } \rightharpoonup {\cal X}$ weakly* in L∞(Ω), we analyse the limit as ε → 0 of the solutions to the nonlocal problems proving that there is a nonlocal limit problem. In the case in which the holes are periodically removed balls, we obtain that the critical radius is of the order of the size of the typical cell (that gives the period). In addition, in this periodic case, we also study the behaviour of these nonlocal problems when we rescale the kernel in order to approximate local PDE problems.
We study the tail asymptotic of subexponential probability densities on the real line. Namely, we show that the n-fold convolution of a subexponential probability density on the real line is asymptotically equivalent to this density multiplied by n. We prove Kesten's bound, which gives a uniform in n estimate of the n-fold convolution by the tail of the density. We also introduce a class of regular subexponential functions and use it to find an analogue of Kesten's bound for functions on ℝd. The results are applied to the study of the fundamental solution to a nonlocal heat equation.
The Toda equation and its variants are studied in the filed of integrable systems. One particularly generalized time discretisation of the Toda equation is known as the discrete hungry Toda (dhToda) equation, which has two main variants referred to as the dhTodaI equation and dhTodaII equation. The dhToda equations have both been shown to be applicable to the computation of eigenvalues of totally nonnegative (TN) matrices, which are matrices without negative minors. The dhTodaI equation has been investigated with respect to the properties of integrable systems, but the dhTodaII equation has not. Explicit solutions using determinants and matrix representations called Lax pairs are often considered as symbolic properties of discrete integrable systems. In this paper, we clarify the determinant solution and Lax pair of the dhTodaII equation by focusing on an infinite sequence. We show that the resulting determinant solution firmly covers the general solution to the dhTodaII equation, and provide an asymptotic analysis of the general solution as discrete-time variable goes to infinity.
The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.
We obtain the long-time behaviour to the variance of the distribution process associated with the solution of the telegraph equation. To this end, we use a version of the Karamata-Feller Tauberian theorem.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.