To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\Delta $ denote a nondegenerate k-simplex in $\mathbb {R}^k$. The set $\operatorname {\mathrm {Sim}}(\Delta )$ of simplices in $\mathbb {R}^k$ similar to $\Delta $ is diffeomorphic to $\operatorname {O}(k)\times [0,\infty )\times \mathbb {R}^k$, where the factor in $\operatorname {O}(k)$ is a matrix called the pose. Among $(k-1)$-spheres smoothly embedded in $\mathbb {R}^k$ and isotopic to the identity, there is a dense family of spheres, for which the subset of $\operatorname {\mathrm {Sim}}(\Delta )$ of simplices inscribed in each embedded sphere contains a similar simplex of every pose $U\in \operatorname {O}(k)$. Further, the intersection of $\operatorname {\mathrm {Sim}}(\Delta )$ with the configuration space of $k+1$ distinct points on an embedded sphere is a manifold whose top homology class maps to the top class in $\operatorname {O}(k)$ via the pose map. This gives a high-dimensional generalisation of classical results on inscribing families of triangles in plane curves. We use techniques established in our previous paper on the square-peg problem where we viewed inscribed simplices in spheres as transverse intersections of submanifolds of compactified configuration spaces.
Toeplitz conjectured that any simple planar loop inscribes a square. Here we prove variants of Toeplitz’s square peg problem. We prove Hadwiger’s 1971 conjecture that any simple loop in $3$-space inscribes a parallelogram. We show that any simple planar loop inscribes sufficiently many rectangles that their vertices are dense in the loop. If the loop is rectifiable, there is a rectangle that cuts the loop into four pieces which can be rearranged to form two loops of equal length. (The previous two results are independently due to Schwartz.) A rectifiable loop in $d$-space can be cut into $(r-1)(d+1)+1$ pieces that can be rearranged by translations to form $r$ loops of equal length. We relate our results to fair divisions of necklaces in the sense of Alon and to Tverberg-type results. This provides a new approach and a common framework to obtain inscribability results for the class of all continuous curves.
Extremal problems for quadrangles circuminscribed in a circular annulus with the Poncelet porism property are considered. Quadrangles with the maximal and the minimal perimeters are determined. Two conjectures end the paper.