This study presents an innovative framework to improve the accessibility and usability of collaborative robot programming. Building on previous research that evaluated the feasibility of using a domain-specific language based on behaviour-driven development, this paper addresses the limitations of earlier work by integrating additional features like a drag-and-drop Blockly web interface. The system enables end users to define and execute robot actions with minimal technical knowledge, making it more adaptable and intuitive. Additionally, a gesture-recognition module facilitates multimodal interaction, allowing users to control robots through natural gestures. The system was evaluated through a user study involving participants with varying levels of professional experience and little to no programming background. Results indicate significant improvements in user satisfaction, with the system usability scale overall score increasing from 7.50 to 8.67 out of a maximum of 10 and integration ratings rising from 4.42 to 4.58 out of 5. Participants completed tasks using a manageable number of blocks (5 to 8) and reported low frustration levels (mean: 8.75 out of 100) alongside moderate mental demand (mean: 38.33 out of 100). These findings demonstrate the tool’s effectiveness in reducing cognitive load, enhancing user engagement and supporting intuitive, efficient programming of collaborative robots for industrial applications.